Tag Archives: phase electric motor

China wholesaler 0.18kw-5600kw 3 Phase AC Squirrel Cage Induction Asynchronous Electric Motor vacuum pump ac system

Product Description

Product Name:
0.18kw-5600kw 3 Phase AC Squirrel Cage Induction Asynchronous Electric Motor

Product Range:

Single Phase Induction Motor 0.12kw~7.5kw
Three Phase Induction Motor 0.18kw~5600kw
Slip Ring Induction Motor 4kw~5600kw
Explosion Proof Motor 0.25kw~1600kw
Brake Motor 0.12kw~200kw
DC Motor 1kw~1500kw

 

ZheJiang LANGRUI INDUSTRIAL CO., LTD. is reliable electric motor manufacturers and electric motor suppliers. We supply single phase induction motor, 3 phase induction motor, squirrel cage induction motor, slip ring induction motor, wound rotor induction motor,  explosion proof motor, ac motor, dc motor, variable speed electric motor, asynchronous motor, synchronous motor, customized electric motors, gearbox, gear motor, speed reducers for decades in China.
We are authorized by ISO9001:2008 as the rules and laws of company operating management. 

 

We includes motors R&D, manufacturing, quality control, technical supporting, domestic and overseas sales, pre-sales and after-sales service etc.

We have winned CHINAMFG reputation from German, UK, Poland, Switzerland, Sweden, Greece, Russia, Ukraine, Uzbekistan, Egypt, Libya, U.A.E., Pakistan, Vietnam, Indonesia, Thailand, Malaysia, Mexico, Cuba, Columbia, other countries and areas.

We are major in manufacturing and supplying general AC motors – single phase induction motors, general asynchronous motors – 3 phase induction motors, explosion proof motors, variable-pole motors, multi speed induction motors, variable frequency motors, variable speed electric motors, brake motors, Russia GOST motors, NEMA motors, high power motors (up to 4000 kW), high voltage motors (up to 13.8 kV), customized motors, helical gear motors, worm gearboxes, planetary gear reducers, speed variators, hanging gear reducers, industrial geared motors and others.

Our motors are widely used in pumps, air blowers, fans, ventilators, mixer, crushers, gearbox, gear motor, reducer, compressors, agitators, refrigerators, conveyors, grinders, elevators, cranes, mills, machine tools, food machinery, press machinery, transportation machinery, agriculture machinery, brick making machinery, textile machinery, mining machinery, paper making machinery, metallurgy machinery, rubber making machinery, petroleum machinery, medicine making machinery, packing machinery, woodworking machinery, chemical machinery, construction machinery, cement making machinery, forging machinery, foundry machinery, hydraulic machinery, pellet machinery, plastic machinery, power plant, steel industry, water conservancy syestem, waste water treatment, dredgers, metal working mills, cooling towers, cableways, petroleum industry, and many other machinery and industries.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Closed Type
Starting Mode: Direct on-line Starting
Certification: ISO9001, CCC, CE
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

variator motor

Are variator motors suitable for applications requiring precise speed control?

Yes, variator motors are generally suitable for applications requiring precise speed control. Here’s a detailed explanation:

Variator motors, also known as variable speed motors or adjustable speed motors, are designed to provide adjustable speed control over a wide range. They allow the user to vary the motor’s speed according to the specific requirements of the application. This flexibility makes them well-suited for applications that demand precise speed control.

Here are some reasons why variator motors are suitable for applications requiring precise speed control:

  • Speed Adjustment Range: Variator motors offer a wide range of adjustable speeds, allowing for precise control over the motor’s rotational speed. Depending on the specific model and type of variator motor, the speed adjustment range can vary from a few RPM (Revolutions Per Minute) to thousands of RPM. This versatility enables the motor to operate at different speeds, accommodating varying process or load requirements.
  • Smooth Speed Transitions: Variator motors can provide smooth and gradual speed transitions. They offer precise speed control without sudden jolts or jerks during acceleration or deceleration. This feature is especially important in applications where precise speed control is critical for maintaining product quality, preventing damage to sensitive equipment, or ensuring smooth operation of processes.
  • Speed Accuracy and Stability: Variator motors can achieve high speed accuracy and stability. They can maintain the desired speed setting within tight tolerances, minimizing deviations and fluctuations. This level of control is essential in applications that require precise synchronization, coordination with other system components, or adherence to specific speed profiles.
  • Control Options: Variator motors often come with various control options, allowing for precise speed adjustments. These options can include manual control through potentiometers or dials, digital control through interface panels or keypads, or even programmable control through communication protocols such as Modbus or Ethernet. The availability of different control options enhances the motor’s suitability for applications requiring precise speed control.
  • Response Time: Variator motors can typically achieve fast response times when adjusting the speed. They can quickly respond to speed commands or changes in the control signal, allowing for precise and immediate adjustments. This responsiveness is beneficial in applications where rapid speed changes or dynamic response is required to meet changing operational conditions.
  • Closed-Loop Control Capability: Some variator motors are equipped with closed-loop control capabilities. Closed-loop control involves using feedback sensors, such as encoders or tachometers, to continuously monitor the motor’s actual speed and compare it to the desired speed. The control system adjusts the motor’s speed based on this feedback, ensuring precise speed control and compensating for any variations or disturbances.
  • Application Versatility: Variator motors are versatile and can be used in a wide range of applications requiring precise speed control. They find applications in industries such as manufacturing, automation, robotics, HVAC (heating, ventilation, and air conditioning), conveyors, pumps, fans, and many others.

However, it’s important to note that the suitability of variator motors for precise speed control may vary depending on factors such as the specific motor model, control system, and the desired level of precision. It’s recommended to consult the motor manufacturer or an expert in motor control to determine the best solution for a particular application.

variator motor

What are the key components and technologies used in modern variator motors?

Modern variator motors incorporate several key components and technologies to enable their variable speed and adjustable torque capabilities. Here’s a detailed explanation:

1. Motor Stator and Rotor: The motor stator and rotor are fundamental components of variator motors. The stator consists of a stationary set of windings that generate a rotating magnetic field when energized. The rotor, typically mounted on the motor shaft, contains conductive bars or coils that interact with the magnetic field and produce mechanical rotation.

2. Power Electronics: Variator motors rely on power electronics components, such as inverters or variable frequency drives (VFDs), to control the motor’s speed and torque. These devices convert the incoming AC power supply into the appropriate voltage and frequency required by the motor. Power electronics also enable smooth and precise adjustment of motor operating parameters, facilitating variable speed operation.

3. Sensors and Feedback Devices: Variator motors often incorporate sensors and feedback devices to monitor motor performance and provide input for control algorithms. Common sensors used include speed sensors, position sensors, temperature sensors, and current sensors. These sensors provide real-time information about the motor’s operating conditions, allowing the control system to adjust motor parameters accordingly.

4. Control Algorithms and Software: Modern variator motors employ sophisticated control algorithms and software to regulate motor speed, torque, and other operating parameters. These algorithms process the sensor data and generate control signals to adjust the power electronics and optimize motor performance. Advanced control techniques, such as field-oriented control (FOC) or model predictive control (MPC), may be used to achieve precise and efficient motor operation.

5. Variable Speed Drive Mechanisms: Variator motors employ various mechanisms to achieve variable speed operation. These mechanisms can include adjustable pulley systems, belt drives, gearboxes, or electronic control of motor winding configurations. The specific mechanism depends on the motor’s design and application requirements.

6. Efficiency-Enhancing Technologies: Modern variator motors incorporate technologies aimed at improving energy efficiency and reducing losses. These technologies may include the use of high-efficiency motor designs, such as permanent magnet motors or synchronous reluctance motors. Additionally, advanced insulation materials, optimized motor cooling systems, and reduced friction bearings can contribute to enhanced motor efficiency.

7. Communication and Networking: Some variator motors feature communication and networking capabilities to enable integration with industrial automation systems or the Internet of Things (IoT). These capabilities facilitate remote monitoring, control, and data exchange, allowing for enhanced motor performance analysis, predictive maintenance, and system integration.

8. Safety and Protection Features: Modern variator motors incorporate safety and protection features to safeguard the motor and the surrounding equipment. These features may include overcurrent protection, overvoltage protection, short-circuit protection, thermal protection, and fault detection mechanisms. These measures ensure safe and reliable operation and help prevent damage to the motor in case of abnormal operating conditions.

The specific components and technologies used in variator motors can vary depending on the motor’s type, design, and application requirements. Motor manufacturers continuously innovate and incorporate advancements in materials, electronics, and control systems to improve motor performance, efficiency, and reliability.

variator motor

How does the efficiency of variator motors compare to other types of motors?

The efficiency of variator motors can vary depending on the specific design, application, and operating conditions. However, in general, variator motors can offer comparable or even higher efficiency compared to other types of motors. Here are some key points to consider:

  • Variable Speed Operation: Variator motors excel in variable speed operations where the motor speed can be adjusted to match the load and process requirements. By running the motor at a speed that precisely meets the demand, variator motors can significantly reduce energy losses associated with running at fixed speeds. This level of control contributes to high overall system efficiency.
  • Energy Savings through Speed Control: The ability to adjust the motor speed in variator motors allows for energy savings. By operating the motor at lower speeds when full speed is not required, variator motors can achieve energy efficiency gains. This is particularly relevant in applications with varying loads or processes that do not constantly require maximum speed.
  • Improved Power Factor: Variator motors with adjustable speed control, such as those incorporating variable frequency drives (VFDs), can improve the power factor of the motor system. Power factor is a measure of how effectively electrical power is being used. By optimizing the motor speed and voltage, VFDs can improve the power factor, resulting in reduced reactive power consumption and improved energy efficiency.
  • Motor Design and Technology: The efficiency of variator motors can also be influenced by the motor design and the use of advanced technologies. Manufacturers are continually improving motor designs, incorporating high-quality materials, precision manufacturing techniques, and efficient cooling systems to enhance motor efficiency. Additionally, advancements in motor technologies, such as the use of permanent magnet materials and improved motor control algorithms, contribute to higher overall efficiency.
  • Comparison with Other Motor Types: When compared to traditional fixed-speed motors, variator motors generally offer higher efficiency due to their ability to adjust speed according to the load. In applications where variable speed control is required, variator motors can outperform fixed-speed motors in terms of energy savings, precise control, and overall system efficiency.

It’s important to note that the efficiency of variator motors can also depend on factors such as motor size, load characteristics, maintenance practices, and system design. Therefore, it’s advisable to consider specific motor specifications, consult with manufacturers, and conduct energy efficiency assessments to determine the most suitable motor type for a given application.

China wholesaler 0.18kw-5600kw 3 Phase AC Squirrel Cage Induction Asynchronous Electric Motor   vacuum pump ac system	China wholesaler 0.18kw-5600kw 3 Phase AC Squirrel Cage Induction Asynchronous Electric Motor   vacuum pump ac system
editor by CX 2024-05-06

China Hot selling Yvf Series Frequency Variable and Speed Adjustable Three Phase Motor Electric AC Motor for Variator with Great quality

Product Description

 

Product Description

Yvf Series Frequency Variable and Speed Adjustable Three Phase Motor Electric AC Motor for Variator

YVF2 series frequency-variable and speed regulative three-phase asynchronous motor are suitable for running in frequency change and speed regulation system which the power is supplied by a frequency converter. This new series of product designed united in the country can be mated with all kinds of SPWM frequency changer and speed regulation devices and is equipped with a separate cooling fan which ensure the motor for good cooling at various speed. They can be used in machine tool, metallugic industry, textile, printing and dyeing, transportation, chemical industry, mine and for seep regulation of fans an d pumps.

 

Model

YVF2-160M-6

Power

7.5kw

Rated torque

3Hz-50Hz

Current

17.3A

Power factor

50Hz-100Hz

Mounting

B3/B5/B35/B34

Voltage & Frequency

380V & 50Hz

If you want more information, please consult me

Product Parameters

 

Detailed Photos

 

Our Advantages

 

Company Profile

Certifications

 

 

 

FAQ

 

Q: Do you offer OEM service?
A: Yes, we can customize it as your request.

Q: What is your payment term?
A: TT. LC, AND WESTER UNION

Q: What is your lead time?
A: About 30 days after receiving deposit.

Q: What certificates do you have?
A: We have CE, ISO. And we can apply for specific certificate for different country such as SONCAP for Nigeria, SASO for Saudi Arabia, etc

Q: What about the warranty?
A: We offer 12month warranty period as the quality guarantee.

Q:What service do you offer?
A: Pre-sales service, in-sales service, after-sales service. If you become our local distributor, we can introduce end-customers to purchase from you.

Q:What’s your motor winding?
A: 100% copper winding

Q:Which port is near to you?
A: HangZhou port. And we can arrange to deliver HangZhou, ZheJiang , Urumqi, or other Chinese cities, too.

Q:Could you offer CHINAMFG Certification.
A: we can do as your request.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 2,4,6,8,10 Pole
Samples:
US$ 280/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

variator motor

Can variator motors be used in both fixed and variable speed applications?

Yes, variator motors can be used in both fixed and variable speed applications. Here’s a detailed explanation:

Variator motors, also known as variable speed motors or adjustable speed motors, are designed to provide flexibility in adjusting the motor’s speed according to the specific requirements of the application. This versatility allows them to be used in a wide range of applications, whether the desired speed is fixed or variable.

Here are some key points to consider regarding the use of variator motors in fixed and variable speed applications:

  • Fixed Speed Applications: In fixed speed applications, where a constant speed is required throughout the operation, variator motors can still be used effectively. The motor can be set at the desired fixed speed during installation or through the control system. The advantage of using variator motors in fixed speed applications is that they often offer high efficiency and reliable performance, which can contribute to energy savings and reduced maintenance needs.
  • Variable Speed Applications: Variator motors are particularly well-suited for variable speed applications, where the speed requirements may change based on different operational conditions or process demands. These motors allow for precise control over the motor’s speed, enabling optimization of the application’s performance. By adjusting the speed according to the specific requirements, variator motors can improve energy efficiency, enhance process control, reduce wear and tear on mechanical components, and enable better synchronization with other system elements.
  • Speed Adjustment Range: Variator motors offer a wide range of adjustable speeds, allowing them to accommodate both fixed and variable speed applications. The speed adjustment range can vary depending on the specific model and type of variator motor. Some motors may have a limited range, while others can provide a broad range of speeds, spanning from low RPMs to high RPMs. When selecting a variator motor for a specific application, it’s essential to consider the required speed range and ensure that the motor can operate within those speed limits.
  • Control Options: Variator motors often come with various control options that allow for easy adjustment of the motor’s speed. These control options can include manual control through potentiometers or dials, digital control through interface panels or keypads, or even programmable control through communication protocols such as Modbus or Ethernet. These control options facilitate the use of variator motors in both fixed and variable speed applications, as they provide flexibility in setting and changing the desired speed.
  • Application Versatility: Variator motors are versatile and find applications in various industries and sectors. They can be used in applications such as conveyors, pumps, fans, compressors, mixers, machine tools, HVAC systems, robotics, and more. This versatility demonstrates how variator motors can be utilized effectively in both fixed and variable speed applications across different industries.

Overall, the use of variator motors offers flexibility and adaptability to meet the speed requirements of different applications, whether fixed or variable. By selecting the appropriate motor model, determining the desired speed range, and utilizing the available control options, variator motors can provide efficient and reliable performance in a wide range of applications.

variator motor

Where can individuals find reputable suppliers or manufacturers of variator motors?

Individuals seeking reputable suppliers or manufacturers of variator motors have several options available. Here’s a detailed explanation:

1. Online Directories and Marketplaces: Online directories and marketplaces dedicated to industrial products and components can be a valuable resource. Platforms like Thomasnet, Alibaba, and GlobalSpec provide comprehensive listings of variator motor suppliers and manufacturers. These platforms often include detailed company profiles, product catalogs, and customer reviews, enabling individuals to assess the reputation and credibility of potential suppliers.

2. Trade Shows and Exhibitions: Attending trade shows and exhibitions related to the industrial or manufacturing sector can provide direct access to variator motor manufacturers and suppliers. These events offer opportunities to explore a wide range of products, interact with industry professionals, and establish contacts with reputable companies. Popular trade shows in the field include Hannover Messe, SPS IPC Drives, and Automation Fair.

3. Industry Associations and Organizations: Industry associations and organizations focused on electrical motors, automation, or specific industrial sectors often maintain directories or member listings that can help individuals find reputable variator motor suppliers. Examples include the International Electrotechnical Commission (IEC), National Electrical Manufacturers Association (NEMA), or sector-specific associations like the Robotics Industries Association (RIA) or the Packaging Machinery Manufacturers Institute (PMMI).

4. Consulting with Industry Professionals: Seeking advice and recommendations from industry professionals, such as engineers, consultants, or system integrators, can provide valuable insights on reputable variator motor suppliers. These professionals have experience with various suppliers and can offer guidance based on specific application requirements and industry knowledge.

5. Referrals and Word of Mouth: Networking within professional circles or reaching out to colleagues and peers in the industry can yield recommendations for reputable variator motor suppliers. Word of mouth referrals from trusted sources can provide firsthand information about the quality, reliability, and customer service of different suppliers.

6. Online Research and Reviews: Conducting online research and reading reviews about variator motor suppliers can help individuals gauge their reputation and assess customer satisfaction. Online forums, industry-specific websites, and social media platforms can provide insights and feedback from other customers who have worked with variator motor suppliers.

When evaluating variator motor suppliers or manufacturers, it’s important to consider factors such as their experience in the industry, product quality, certifications, technical support, warranty terms, and after-sales service. Requesting product samples, specifications, and references from potential suppliers can also help individuals make informed decisions.

By leveraging these resources and conducting thorough research, individuals can find reputable suppliers or manufacturers of variator motors that meet their specific requirements and ensure the quality and reliability of the products they purchase.

variator motor

Are there specific types of variator motors designed for certain tasks or environments?

Yes, there are specific types of variator motors that are designed to suit certain tasks or operate effectively in specific environments. Here are some examples:

  • Variable Frequency Drives (VFDs): VFDs are a type of variator motor designed for electric motors. They are widely used in various industrial applications and are particularly suited for tasks that require precise speed control. VFDs allow for adjustable speed by varying the frequency of the electrical power supplied to the motor. They are commonly utilized in applications such as pumps, fans, conveyors, and machine tools.
  • Hydraulic Variator Motors: Hydraulic variator motors are designed for applications that require high torque and ruggedness. They are commonly used in heavy machinery, construction equipment, and industrial processes where hydraulic power is readily available. Hydraulic variators control the motor speed by adjusting the flow rate and pressure of the hydraulic fluid, allowing for variable speed operation in demanding environments.
  • Variable Transmission Systems: Some variator motors are designed with variable transmission systems, such as mechanical gearboxes. These motors are suitable for applications that require adjustable speed through gear ratio changes. They are commonly used in automotive applications, industrial machinery, and equipment that benefit from mechanical speed control mechanisms.
  • Electronically Controlled Variator Motors: Certain variator motors incorporate advanced electronic control systems to achieve variable speed control. These motors are often used in automation and robotics applications, where precise and programmable speed control is essential. The electronic control systems allow for integration with other control systems and enable sophisticated control algorithms to optimize performance.
  • Explosion-proof Variator Motors: In hazardous environments where the presence of flammable gases or dust is a concern, explosion-proof variator motors are designed to meet strict safety standards. These motors are constructed with special enclosures, seals, and components that prevent the ignition of hazardous substances. They are commonly used in industries such as oil and gas, chemical processing, and mining.

These are just a few examples of specific types of variator motors designed for particular tasks or environments. It’s important to select the appropriate variator motor that meets the requirements of the specific application, taking into consideration factors such as speed range, load characteristics, environmental conditions, safety considerations, and regulatory compliance.

China Hot selling Yvf Series Frequency Variable and Speed Adjustable Three Phase Motor Electric AC Motor for Variator   with Great quality China Hot selling Yvf Series Frequency Variable and Speed Adjustable Three Phase Motor Electric AC Motor for Variator   with Great quality
editor by CX 2024-04-03

China high quality Yvf 0.75 Kw AC Induction and Speed Adjustable Three Phase Motor Yvp Electric DC Motor for Variator with Great quality

Product Description

 

Product Description

Yvf 0.75 Kw AC Induction and Speed Adjustable Three Phase Motor Yvp Electric DC Motor for Variator

YVF2 series frequency-variable and speed regulative three-phase asynchronous motor are suitable for running in frequency change and speed regulation system which the power is supplied by a frequency converter. This new series of product designed united in the country can be mated with all kinds of SPWM frequency changer and speed regulation devices and is equipped with a separate cooling fan which ensure the motor for good cooling at various speed. They can be used in machine tool, metallugic industry, textile, printing and dyeing, transportation, chemical industry, mine and for seep regulation of fans an d pumps.

 

Model

YVF2-160M-6

Power

7.5kw

Rated torque

3Hz-50Hz

Current

17.3A

Power factor

50Hz-100Hz

Mounting

B3/B5/B35/B34

Voltage & Frequency

380V & 50Hz

If you want more information, please consult me

Product Parameters

 

Detailed Photos

 

Our Advantages

 

Company Profile

Certifications

 

 

 

FAQ

 

Q: Do you offer OEM service?
A: Yes, we can customize it as your request.

Q: What is your payment term?
A: TT. LC, AND WESTER UNION

Q: What is your lead time?
A: About 30 days after receiving deposit.

Q: What certificates do you have?
A: We have CE, ISO. And we can apply for specific certificate for different country such as SONCAP for Nigeria, SASO for Saudi Arabia, etc

Q: What about the warranty?
A: We offer 12month warranty period as the quality guarantee.

Q:What service do you offer?
A: Pre-sales service, in-sales service, after-sales service. If you become our local distributor, we can introduce end-customers to purchase from you.

Q:What’s your motor winding?
A: 100% copper winding

Q:Which port is near to you?
A: HangZhou port. And we can arrange to deliver HangZhou, ZheJiang , Urumqi, or other Chinese cities, too.

Q:Could you offer CHINAMFG Certification.
A: we can do as your request.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 2,4,6,8,10 Pole
Samples:
US$ 88.5/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

variator motor

Are variator motors suitable for applications requiring precise speed control?

Yes, variator motors are generally suitable for applications requiring precise speed control. Here’s a detailed explanation:

Variator motors, also known as variable speed motors or adjustable speed motors, are designed to provide adjustable speed control over a wide range. They allow the user to vary the motor’s speed according to the specific requirements of the application. This flexibility makes them well-suited for applications that demand precise speed control.

Here are some reasons why variator motors are suitable for applications requiring precise speed control:

  • Speed Adjustment Range: Variator motors offer a wide range of adjustable speeds, allowing for precise control over the motor’s rotational speed. Depending on the specific model and type of variator motor, the speed adjustment range can vary from a few RPM (Revolutions Per Minute) to thousands of RPM. This versatility enables the motor to operate at different speeds, accommodating varying process or load requirements.
  • Smooth Speed Transitions: Variator motors can provide smooth and gradual speed transitions. They offer precise speed control without sudden jolts or jerks during acceleration or deceleration. This feature is especially important in applications where precise speed control is critical for maintaining product quality, preventing damage to sensitive equipment, or ensuring smooth operation of processes.
  • Speed Accuracy and Stability: Variator motors can achieve high speed accuracy and stability. They can maintain the desired speed setting within tight tolerances, minimizing deviations and fluctuations. This level of control is essential in applications that require precise synchronization, coordination with other system components, or adherence to specific speed profiles.
  • Control Options: Variator motors often come with various control options, allowing for precise speed adjustments. These options can include manual control through potentiometers or dials, digital control through interface panels or keypads, or even programmable control through communication protocols such as Modbus or Ethernet. The availability of different control options enhances the motor’s suitability for applications requiring precise speed control.
  • Response Time: Variator motors can typically achieve fast response times when adjusting the speed. They can quickly respond to speed commands or changes in the control signal, allowing for precise and immediate adjustments. This responsiveness is beneficial in applications where rapid speed changes or dynamic response is required to meet changing operational conditions.
  • Closed-Loop Control Capability: Some variator motors are equipped with closed-loop control capabilities. Closed-loop control involves using feedback sensors, such as encoders or tachometers, to continuously monitor the motor’s actual speed and compare it to the desired speed. The control system adjusts the motor’s speed based on this feedback, ensuring precise speed control and compensating for any variations or disturbances.
  • Application Versatility: Variator motors are versatile and can be used in a wide range of applications requiring precise speed control. They find applications in industries such as manufacturing, automation, robotics, HVAC (heating, ventilation, and air conditioning), conveyors, pumps, fans, and many others.

However, it’s important to note that the suitability of variator motors for precise speed control may vary depending on factors such as the specific motor model, control system, and the desired level of precision. It’s recommended to consult the motor manufacturer or an expert in motor control to determine the best solution for a particular application.

variator motor

Are there common troubleshooting issues associated with variator motor operation?

Yes, variator motors can experience common troubleshooting issues during their operation. Here’s a detailed explanation:

1. Overheating: Overheating is a common issue in variator motors and can be caused by factors such as excessive load, inadequate cooling, or motor inefficiencies. Overheating can lead to motor damage and reduced lifespan. Troubleshooting steps may involve checking for proper ventilation, ensuring adequate cooling mechanisms, and verifying that the motor is correctly sized for the application.

2. Noise and Vibration: Excessive noise and vibration can indicate problems with the motor’s bearings, misalignment, unbalanced loads, or mechanical issues. Troubleshooting may involve inspecting and lubricating bearings, aligning motor components, and addressing any mechanical faults.

3. Electrical Issues: Variator motors can experience electrical issues such as phase imbalances, voltage fluctuations, or short circuits. These issues can result in abnormal motor operation or failure. Troubleshooting may involve checking electrical connections, verifying voltage levels, and inspecting motor windings for damage.

4. Poor Performance: Poor motor performance can be caused by factors such as incorrect motor programming, inadequate power supply, or control system malfunctions. Troubleshooting steps may include recalibrating motor parameters, checking power supply stability, and verifying proper functioning of the control system.

5. Start-Up and Stopping Problems: Variator motors may encounter difficulties during start-up or stopping processes. These issues can be related to control system settings, mechanical constraints, or insufficient torque. Troubleshooting may involve adjusting acceleration and deceleration profiles, verifying mechanical components for obstructions, and ensuring sufficient torque for the application.

6. Communication and Networking: Variator motors equipped with communication and networking capabilities may experience troubleshooting issues related to connectivity, data exchange, or software compatibility. Troubleshooting steps may involve checking network configurations, updating firmware or software, and ensuring compatibility between devices and protocols.

7. Environmental Factors: Variator motor operation can be influenced by environmental factors such as temperature, humidity, or contaminants. Extreme temperatures, high humidity, or the presence of dust or debris can impact motor performance. Troubleshooting may involve implementing environmental controls, cleaning motor components, or providing additional protection against harsh conditions.

When troubleshooting variator motor issues, it’s recommended to consult the motor’s documentation, manufacturer’s guidelines, and seek assistance from qualified technicians or engineers. They can provide specific troubleshooting procedures and recommendations based on the motor model and application requirements.

Regular maintenance, periodic inspections, and adherence to operating guidelines can help prevent or mitigate common troubleshooting issues associated with variator motor operation.

variator motor

What are the advantages of using variator motors in industrial settings?

Variator motors offer several advantages when used in industrial settings. Here are some key benefits:

  • Flexible Speed Control: One of the primary advantages of variator motors is their ability to provide flexible speed control. Unlike traditional motors that operate at a fixed speed, variator motors allow for adjustable speed settings. This flexibility enables industrial processes to be optimized for different operational requirements, such as varying loads, different stages of production, or specific process demands.
  • Energy Efficiency: Variator motors can help improve energy efficiency in industrial settings. By adjusting the motor speed to match the required output, these motors can avoid the energy losses associated with running at fixed speeds. Operating the motor at lower speeds when the full speed is not necessary can lead to significant energy savings. This energy efficiency not only reduces operational costs but also contributes to sustainability and environmental conservation efforts.
  • Precise Process Control: The ability to finely tune the speed of variator motors enables precise process control in industrial settings. Processes that require accurate manipulation of speed, such as mixing, blending, and conveyance, can benefit from variator motors. The adjustable speed allows for better control over product quality, consistency, and production rates.
  • Adaptability to Changing Loads: Variator motors are well-suited for applications that experience varying loads. The adjustable speed control allows the motor to respond to changes in load conditions, compensating for fluctuations and ensuring optimal performance. This adaptability is particularly advantageous in industries where load variations are common, such as material handling, conveyor systems, and production lines with varying throughput requirements.
  • Reduced Mechanical Stress: In some industrial processes, sudden starts or stops and rapid speed changes can subject mechanical components to excessive stress, leading to premature wear and tear. Variator motors can mitigate this issue by providing smooth and controlled acceleration and deceleration. The ability to gradually ramp up or down the motor speed reduces mechanical stress on the system, prolonging the lifespan of equipment and minimizing maintenance needs.
  • Improved Productivity: Variator motors can contribute to improved productivity in industrial settings. The adjustable speed control allows for process optimization, reducing cycle times and enhancing overall efficiency. By matching the motor speed to the specific requirements of each stage of production, variator motors can help streamline operations and increase productivity.

These advantages make variator motors a valuable choice for a wide range of industrial applications. Their flexibility, energy efficiency, precise control, adaptability, and productivity enhancements contribute to improved performance and cost-effectiveness in industrial settings.

China high quality Yvf 0.75 Kw AC Induction and Speed Adjustable Three Phase Motor Yvp Electric DC Motor for Variator   with Great quality China high quality Yvf 0.75 Kw AC Induction and Speed Adjustable Three Phase Motor Yvp Electric DC Motor for Variator   with Great quality
editor by CX 2024-03-29

China Standard Yvf 0.75 Kw AC Induction and Speed Adjustable Three Phase Motor Yvp Electric DC Motor for Variator vacuum pump distributors

Product Description

 

Product Description

Yvf 0.75 Kw AC Induction and Speed Adjustable Three Phase Motor Yvp Electric DC Motor for Variator

YVF2 series frequency-variable and speed regulative three-phase asynchronous motor are suitable for running in frequency change and speed regulation system which the power is supplied by a frequency converter. This new series of product designed united in the country can be mated with all kinds of SPWM frequency changer and speed regulation devices and is equipped with a separate cooling fan which ensure the motor for good cooling at various speed. They can be used in machine tool, metallugic industry, textile, printing and dyeing, transportation, chemical industry, mine and for seep regulation of fans an d pumps.

 

Model

YVF2-160M-6

Power

7.5kw

Rated torque

3Hz-50Hz

Current

17.3A

Power factor

50Hz-100Hz

Mounting

B3/B5/B35/B34

Voltage & Frequency

380V & 50Hz

If you want more information, please consult me

Product Parameters

 

Detailed Photos

 

Our Advantages

 

Company Profile

Certifications

 

 

 

FAQ

 

Q: Do you offer OEM service?
A: Yes, we can customize it as your request.

Q: What is your payment term?
A: TT. LC, AND WESTER UNION

Q: What is your lead time?
A: About 30 days after receiving deposit.

Q: What certificates do you have?
A: We have CE, ISO. And we can apply for specific certificate for different country such as SONCAP for Nigeria, SASO for Saudi Arabia, etc

Q: What about the warranty?
A: We offer 12month warranty period as the quality guarantee.

Q:What service do you offer?
A: Pre-sales service, in-sales service, after-sales service. If you become our local distributor, we can introduce end-customers to purchase from you.

Q:What’s your motor winding?
A: 100% copper winding

Q:Which port is near to you?
A: HangZhou port. And we can arrange to deliver HangZhou, ZheJiang , Urumqi, or other Chinese cities, too.

Q:Could you offer CHINAMFG Certification.
A: we can do as your request.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 2,4,6,8,10 Pole
Samples:
US$ 88.5/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

variator motor

What safety considerations are associated with the installation and operation of variator motors?

When installing and operating variator motors, several safety considerations should be taken into account. Here’s a detailed explanation:

Variator motors, like any other electrical or mechanical equipment, require proper installation, operation, and maintenance to ensure safe and reliable performance. Here are some key safety considerations associated with the installation and operation of variator motors:

  • Electrical Safety: Variator motors are powered by electricity, so it’s crucial to follow electrical safety guidelines during installation and operation. This includes ensuring proper grounding of the motor and adhering to local electrical codes and regulations. It’s important to have a qualified electrician handle the electrical connections and ensure that the motor is properly wired and protected from electrical hazards.
  • Mechanical Safety: Variator motors often have moving parts and may be connected to mechanical systems. During installation, it’s necessary to ensure that the motor is securely mounted and aligned with the driven equipment. Adequate guarding should be provided to prevent accidental contact with moving parts, such as belts, pulleys, or couplings. Properly sized and rated couplings, belts, and other mechanical components should be used to ensure safe and reliable operation.
  • Overload Protection: Variator motors should be protected against overloading. Overloading can cause overheating, reduced motor life, and potential safety hazards. It’s important to select a motor with the appropriate power rating for the application and ensure that it’s not subjected to excessive loads. Additional overload protection devices, such as thermal protectors or overload relays, may be necessary to safeguard the motor and prevent damage or hazards.
  • Heat Dissipation: Variator motors can generate heat during operation, especially at higher speeds or under heavy loads. Sufficient ventilation and cooling should be provided to dissipate the heat effectively. Adequate clearance around the motor and proper ventilation in the motor enclosure or installation area can help prevent overheating and ensure safe operation. It’s important to follow the manufacturer’s recommendations regarding cooling and ventilation requirements.
  • Environmental Considerations: The installation and operation of variator motors should consider the environmental conditions in which they will be used. For example, if the motor will be exposed to moisture, dust, or corrosive substances, appropriate measures should be taken to protect the motor against these elements. This may include using sealed motor enclosures or installing the motor in a suitable protective housing. Additionally, if the motor will be used in hazardous locations, such as areas with flammable gases or dust, it must comply with the applicable safety standards and requirements.
  • Proper Maintenance: Regular maintenance is essential for the safe and reliable operation of variator motors. This includes periodic inspection, cleaning, and lubrication of the motor and its components. It’s important to follow the manufacturer’s maintenance guidelines and schedule to ensure that the motor remains in good working condition. Any signs of wear, damage, or abnormal operating conditions should be addressed promptly to prevent safety risks.
  • Training and Awareness: Proper training and awareness of the operators and maintenance personnel are crucial for safe operation and maintenance of variator motors. Operators should be knowledgeable about the motor’s operation, control features, and emergency procedures. Maintenance personnel should be trained to perform maintenance tasks safely and be aware of potential hazards associated with the motor. Regular safety training and refresher courses can help promote a safe working environment.

It’s important to note that the specific safety considerations may vary depending on the motor model, application, and local regulations. Therefore, it’s recommended to consult the manufacturer’s documentation and guidelines, as well as relevant safety standards, to ensure that all necessary safety precautions are followed during the installation and operation of variator motors.

variator motor

Are there cost considerations when choosing variator motors for industrial use?

Yes, there are several cost considerations that come into play when choosing variator motors for industrial use. Here’s a detailed explanation:

When selecting variator motors for industrial applications, it’s important to evaluate not only the initial purchase cost but also the overall cost of ownership throughout the motor’s lifespan. Here are some key cost considerations to keep in mind:

  • Motor Cost: The initial purchase cost of the variator motor is an important consideration. The cost can vary depending on factors such as motor power rating, brand, quality, and additional features. It’s essential to compare prices from different suppliers and manufacturers to ensure a competitive and reasonable cost for the motor.
  • Efficiency: The energy efficiency of the variator motor can have a significant impact on long-term operating costs. More efficient motors consume less energy, resulting in reduced electricity bills. It’s advisable to choose high-efficiency motors that meet or exceed the minimum efficiency standards set by regulatory bodies, such as the International Electrotechnical Commission (IEC) or the National Electrical Manufacturers Association (NEMA). Although high-efficiency motors may have a higher initial cost, the energy savings over the motor’s lifespan can offset the additional investment.
  • Maintenance and Service: Consider the maintenance requirements and associated costs of variator motors. Motors that require regular maintenance, such as lubrication, bearing replacements, or brush inspections, may have higher maintenance costs compared to maintenance-free or sealed motor designs. It’s important to factor in the anticipated maintenance needs and costs when evaluating the overall cost of ownership.
  • Durability and Reliability: Variator motors that are built to withstand harsh operating conditions and have a long service life can offer cost advantages in the long run. Although more durable and reliable motors may have a higher upfront cost, they can minimize the need for premature motor replacements, reduce downtime, and lower maintenance and repair expenses. It’s crucial to assess the motor’s quality, reputation, and warranty provisions to gauge its expected durability and reliability.
  • Control and Automation: Variator motors often come with various control options and compatibility with automation systems. While these features can enhance operational efficiency and control, they may have associated costs. Consider the cost of control devices, such as variable frequency drives (VFDs), sensors, and monitoring equipment. Additionally, if integrating the motor into an existing automation system, ensure compatibility and account for any necessary upgrades or modifications.
  • Application-Specific Requirements: Some industrial applications may have specific motor requirements that can impact costs. For example, if the motor needs to operate in extreme temperatures, hazardous environments, or corrosive atmospheres, special motor designs or materials may be necessary, which can increase costs. It’s important to evaluate any application-specific requirements and associated costs when selecting variator motors.
  • Future Expandability: Consider the scalability and expandability of the motor system. If there are possibilities of future capacity expansions or modifications to the industrial process, choosing a motor that can accommodate such changes can prevent the need for a costly motor replacement in the future.

By carefully considering these cost factors, industrial users can make informed decisions when selecting variator motors that strike a balance between upfront costs and long-term operational expenses. It’s advisable to consult with motor suppliers, engineers, and industry experts to assess the specific cost considerations relevant to the industrial application and ensure the optimal motor choice.

variator motor

Can you explain the principle behind the variable speed control in variator motors?

The variable speed control in variator motors is achieved through various mechanisms depending on the specific type of variator motor. Here, we’ll explore a few common principles behind variable speed control:

  • Adjustable Transmission Systems: Many variator motors utilize adjustable transmission systems to achieve variable speed control. One common example is the use of variable frequency drives (VFDs) in electric motors. VFDs facilitate speed control by adjusting the frequency of the electrical power supplied to the motor. By modifying the frequency, the VFD can change the rotational speed of the motor. Another example is the use of mechanical gearboxes with different gear ratios. By selecting different gears, the input speed can be converted to various output speeds, allowing for speed control.
  • Electronic Control Systems: Some variator motors employ electronic control systems to achieve variable speed control. These control systems typically consist of microprocessors, sensors, and feedback mechanisms. The motor speed is adjusted based on input signals or commands received by the control system. The control system then modulates the power supplied to the motor to achieve the desired speed. This approach is often used in applications where precise speed control and automation are required.
  • Hydraulic Control Systems: In hydraulic variator motors, speed control is achieved through hydraulic control systems. These systems use hydraulic pumps, valves, and actuators to adjust the motor speed. By controlling the flow rate and pressure of the hydraulic fluid, the speed of the motor can be modulated. Hydraulic variator motors are commonly used in applications where high torque and ruggedness are required, such as heavy machinery and construction equipment.

Regardless of the specific mechanism used, the principle behind variable speed control in variator motors involves adjusting the input power, transmission, or control system to modify the rotational speed of the motor. This flexibility in controlling the speed allows for precise matching of the motor’s output to the requirements of the application, resulting in improved efficiency, reduced energy consumption, and enhanced performance.

China Standard Yvf 0.75 Kw AC Induction and Speed Adjustable Three Phase Motor Yvp Electric DC Motor for Variator   vacuum pump distributorsChina Standard Yvf 0.75 Kw AC Induction and Speed Adjustable Three Phase Motor Yvp Electric DC Motor for Variator   vacuum pump distributors
editor by CX 2024-03-10

China Hot selling Yvf Series Frequency Variable and Speed Adjustable Three Phase Motor Electric AC Motor for Variator vacuum pump belt

Product Description

 

Product Description

Yvf Series Frequency Variable and Speed Adjustable Three Phase Motor Electric AC Motor for Variator

YVF2 series frequency-variable and speed regulative three-phase asynchronous motor are suitable for running in frequency change and speed regulation system which the power is supplied by a frequency converter. This new series of product designed united in the country can be mated with all kinds of SPWM frequency changer and speed regulation devices and is equipped with a separate cooling fan which ensure the motor for good cooling at various speed. They can be used in machine tool, metallugic industry, textile, printing and dyeing, transportation, chemical industry, mine and for seep regulation of fans an d pumps.

 

Model

YVF2-160M-6

Power

7.5kw

Rated torque

3Hz-50Hz

Current

17.3A

Power factor

50Hz-100Hz

Mounting

B3/B5/B35/B34

Voltage & Frequency

380V & 50Hz

If you want more information, please consult me

Product Parameters

 

Detailed Photos

 

Our Advantages

 

Company Profile

Certifications

 

 

 

FAQ

 

Q: Do you offer OEM service?
A: Yes, we can customize it as your request.

Q: What is your payment term?
A: TT. LC, AND WESTER UNION

Q: What is your lead time?
A: About 30 days after receiving deposit.

Q: What certificates do you have?
A: We have CE, ISO. And we can apply for specific certificate for different country such as SONCAP for Nigeria, SASO for Saudi Arabia, etc

Q: What about the warranty?
A: We offer 12month warranty period as the quality guarantee.

Q:What service do you offer?
A: Pre-sales service, in-sales service, after-sales service. If you become our local distributor, we can introduce end-customers to purchase from you.

Q:What’s your motor winding?
A: 100% copper winding

Q:Which port is near to you?
A: HangZhou port. And we can arrange to deliver HangZhou, ZheJiang , Urumqi, or other Chinese cities, too.

Q:Could you offer CHINAMFG Certification.
A: we can do as your request.

 

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 2,4,6,8,10 Pole
Samples:
US$ 280/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

variator motor

Can variator motors be used in both fixed and variable speed applications?

Yes, variator motors can be used in both fixed and variable speed applications. Here’s a detailed explanation:

Variator motors, also known as variable speed motors or adjustable speed motors, are designed to provide flexibility in adjusting the motor’s speed according to the specific requirements of the application. This versatility allows them to be used in a wide range of applications, whether the desired speed is fixed or variable.

Here are some key points to consider regarding the use of variator motors in fixed and variable speed applications:

  • Fixed Speed Applications: In fixed speed applications, where a constant speed is required throughout the operation, variator motors can still be used effectively. The motor can be set at the desired fixed speed during installation or through the control system. The advantage of using variator motors in fixed speed applications is that they often offer high efficiency and reliable performance, which can contribute to energy savings and reduced maintenance needs.
  • Variable Speed Applications: Variator motors are particularly well-suited for variable speed applications, where the speed requirements may change based on different operational conditions or process demands. These motors allow for precise control over the motor’s speed, enabling optimization of the application’s performance. By adjusting the speed according to the specific requirements, variator motors can improve energy efficiency, enhance process control, reduce wear and tear on mechanical components, and enable better synchronization with other system elements.
  • Speed Adjustment Range: Variator motors offer a wide range of adjustable speeds, allowing them to accommodate both fixed and variable speed applications. The speed adjustment range can vary depending on the specific model and type of variator motor. Some motors may have a limited range, while others can provide a broad range of speeds, spanning from low RPMs to high RPMs. When selecting a variator motor for a specific application, it’s essential to consider the required speed range and ensure that the motor can operate within those speed limits.
  • Control Options: Variator motors often come with various control options that allow for easy adjustment of the motor’s speed. These control options can include manual control through potentiometers or dials, digital control through interface panels or keypads, or even programmable control through communication protocols such as Modbus or Ethernet. These control options facilitate the use of variator motors in both fixed and variable speed applications, as they provide flexibility in setting and changing the desired speed.
  • Application Versatility: Variator motors are versatile and find applications in various industries and sectors. They can be used in applications such as conveyors, pumps, fans, compressors, mixers, machine tools, HVAC systems, robotics, and more. This versatility demonstrates how variator motors can be utilized effectively in both fixed and variable speed applications across different industries.

Overall, the use of variator motors offers flexibility and adaptability to meet the speed requirements of different applications, whether fixed or variable. By selecting the appropriate motor model, determining the desired speed range, and utilizing the available control options, variator motors can provide efficient and reliable performance in a wide range of applications.

variator motor

Are there cost considerations when choosing variator motors for industrial use?

Yes, there are several cost considerations that come into play when choosing variator motors for industrial use. Here’s a detailed explanation:

When selecting variator motors for industrial applications, it’s important to evaluate not only the initial purchase cost but also the overall cost of ownership throughout the motor’s lifespan. Here are some key cost considerations to keep in mind:

  • Motor Cost: The initial purchase cost of the variator motor is an important consideration. The cost can vary depending on factors such as motor power rating, brand, quality, and additional features. It’s essential to compare prices from different suppliers and manufacturers to ensure a competitive and reasonable cost for the motor.
  • Efficiency: The energy efficiency of the variator motor can have a significant impact on long-term operating costs. More efficient motors consume less energy, resulting in reduced electricity bills. It’s advisable to choose high-efficiency motors that meet or exceed the minimum efficiency standards set by regulatory bodies, such as the International Electrotechnical Commission (IEC) or the National Electrical Manufacturers Association (NEMA). Although high-efficiency motors may have a higher initial cost, the energy savings over the motor’s lifespan can offset the additional investment.
  • Maintenance and Service: Consider the maintenance requirements and associated costs of variator motors. Motors that require regular maintenance, such as lubrication, bearing replacements, or brush inspections, may have higher maintenance costs compared to maintenance-free or sealed motor designs. It’s important to factor in the anticipated maintenance needs and costs when evaluating the overall cost of ownership.
  • Durability and Reliability: Variator motors that are built to withstand harsh operating conditions and have a long service life can offer cost advantages in the long run. Although more durable and reliable motors may have a higher upfront cost, they can minimize the need for premature motor replacements, reduce downtime, and lower maintenance and repair expenses. It’s crucial to assess the motor’s quality, reputation, and warranty provisions to gauge its expected durability and reliability.
  • Control and Automation: Variator motors often come with various control options and compatibility with automation systems. While these features can enhance operational efficiency and control, they may have associated costs. Consider the cost of control devices, such as variable frequency drives (VFDs), sensors, and monitoring equipment. Additionally, if integrating the motor into an existing automation system, ensure compatibility and account for any necessary upgrades or modifications.
  • Application-Specific Requirements: Some industrial applications may have specific motor requirements that can impact costs. For example, if the motor needs to operate in extreme temperatures, hazardous environments, or corrosive atmospheres, special motor designs or materials may be necessary, which can increase costs. It’s important to evaluate any application-specific requirements and associated costs when selecting variator motors.
  • Future Expandability: Consider the scalability and expandability of the motor system. If there are possibilities of future capacity expansions or modifications to the industrial process, choosing a motor that can accommodate such changes can prevent the need for a costly motor replacement in the future.

By carefully considering these cost factors, industrial users can make informed decisions when selecting variator motors that strike a balance between upfront costs and long-term operational expenses. It’s advisable to consult with motor suppliers, engineers, and industry experts to assess the specific cost considerations relevant to the industrial application and ensure the optimal motor choice.

variator motor

What is a variator motor, and how does it differ from traditional motors?

A variator motor, also known as a variable speed motor, is a type of motor that allows for adjustable speed control. Unlike traditional motors that operate at a fixed speed, variator motors provide the ability to vary the rotational speed to meet specific application requirements. Here are some key points differentiating variator motors from traditional motors:

  • Speed Control: The primary difference between variator motors and traditional motors is the ability to control the speed. Traditional motors typically operate at a fixed speed determined by the motor’s design and the frequency of the power supply. In contrast, variator motors feature mechanisms that allow for adjustable speed control, enabling users to increase or decrease the rotational speed as needed.
  • Operating Principle: Variator motors achieve variable speed control through various mechanisms. One common approach is the use of adjustable transmission systems, such as variable frequency drives (VFDs) or mechanical gearboxes. These systems allow for changes in the motor’s output speed by adjusting the input power frequency or gear ratio. Other variator motors may employ electronic or hydraulic control systems to modulate the motor’s speed based on input signals or user commands.
  • Application Flexibility: The ability to adjust the speed makes variator motors highly versatile and suitable for a wide range of applications. They can be employed in situations where precise speed control, energy efficiency, or the ability to adapt to changing operational requirements is critical. Variator motors find applications in industrial machinery, conveyors, pumps, fans, and other systems where speed modulation is beneficial.
  • Energy Efficiency: Variator motors often exhibit higher energy efficiency compared to traditional motors, especially when operating at reduced speeds. By adjusting the motor’s speed to match the required output, variator motors can minimize energy wastage associated with running at fixed speeds. This energy-saving capability can lead to reduced operating costs and improved overall system efficiency.
  • Cost and Complexity: Variator motors, due to their speed control capabilities, can be more complex and costly compared to traditional motors. The additional components required for speed modulation, such as variable frequency drives or control systems, can increase the overall system complexity and initial investment. However, the benefits of adjustable speed control and energy efficiency often outweigh the higher upfront costs in many applications.

In summary, a variator motor allows for adjustable speed control, enabling users to change the rotational speed to meet specific application requirements. With their ability to modulate speed, variator motors offer greater flexibility, energy efficiency, and application versatility compared to traditional motors.

China Hot selling Yvf Series Frequency Variable and Speed Adjustable Three Phase Motor Electric AC Motor for Variator   vacuum pump belt	China Hot selling Yvf Series Frequency Variable and Speed Adjustable Three Phase Motor Electric AC Motor for Variator   vacuum pump belt
editor by CX 2023-11-18

China Standard Three Phase Worm Electric Geared Motor with Udl Speed Variator vacuum pump

Product Description

Product Description

Product Characteristics:
1.High speed-regulating precision :0.5-1 rotation
2.High speed-changing range: ratio from 1:1.4 to 1:7 freely;
3.High strength and long service life
4.Convenient to regulate speed
5.Can run continuously, front to back running direction, smooth running,stable performance, and low noise.
6.Sealed fully and suitable for any environment
7.Companct structure and small volume
8.Made of high quality aluminium alloy diecast into foarming, nice appearance,light weight and non-rusty.9.Good adaptation:UDL series speed variators can be combined with all kinds of speed reducers to achive low stepless speed regulating(such as R-K-F-S Series and NMRV worm reducers).
Applications:
UDL series stepless speed variators are widely used for foodstaffs, packing, chemicals,pharmacy,plastics, paper-making, machine tools,communications and all kinds of automatic lines,pipelines and assembly lines which need speed regulating. It is a good companion for production machines.

Detailed Photos

Product Parameters

 

PERFORMANCE PARAMETER
Performance table for UDL series speed variators(n1=1400r/min)
Motor Power Model i n2(r/min) M2(Nm)
0.18KW       UDL002(UDL0.18) 1.6∽8.2 880∽170 1.5∽3
0.37KW      UDL005(UDL0.37) 1.4∽7 1000∽200 3∽6
0.75KW      UDL571(UDL0.75) 1.4∽7 1000∽200 6∽12
 1.5KW      UD571(UD1.5) 1.4∽7 1000∽200 12∽24
 2.2KW      UD030(UD2.2) 1.4∽7 1000∽200 18∽36
 3.0KW      UD040(UD3.0) 1.4∽7 1000∽200 24∽48
 4.0KW      UD050(UD4.0) 1.4∽7 1000∽200 32∽64

Outline Dimension:

Company Profile

About our company:
We are a professional reducer manufacturer located in HangZhou, ZHangZhoug province.Our leading products is  full range of RV571-150 worm reducers , also supplied hypoid helical gearbox, PC units, UDL Variators and AC Motors.Products are widely used for applications such as: foodstuffs, ceramics, packing, chemicals, pharmacy, plastics, paper-making, construction machinery, metallurgic mine, environmental protection engineering, and all kinds of automatic lines, and assembly lines.With fast delivery, superior after-sales service, advanced producing facility, our products sell well  both at home and abroad. We have exported our reducers to Southeast Asia, Eastern Europe and the Middle East and so on.Our aim is to develop and innovate on the basis of high quality, and create a good reputation for reducers.
 Workshop:
Exhibition:

We participate Germany Hannver Exhibition-ZheJiang PTC Fair-Turkey Win Eurasia

Packaging & Shipping

Packing information:Plastic Bags+Cartons+Wooden Cases , or on request.

Installation Instructions

To install the reducer, it is necessary to note the following issues:
1)Check the correct rotation direction of output shaft before fitting reducer to machines.
2)Before mounting, pls check shaft diameter, bore diameter, key and keyway, to be sure their dimension are not deviation; In order to keep good performance, also pls avoid assembling too tight or too loose. 
3)Reducer must be mounted to machines stably to avoid vibration.
4)Whenever possible,protect the reducer against solar radiation and bad weather.
5)In the case of particularly lengthy period of storage(4-6 months), if the oil seal is not immersed in lubricant inside the unit, it is recommended to change it since the rubber could stick to the shaft or may even have lost the elasticity.
6)Painting must definitely not go over rubber parts and the holes on breather plug if any.
7)When connect with hollow or CHINAMFG shaft, pls grease the joint to avoid lock or oxidation.
8)Check the correct lubricant level through indicator if there is one.
9)Starting must take place gradually, without immediately applying the maximum load.
10)When using various of motors to match reducer directly, supporting unit is required if motor is too heavy.
11)Ensure good heat dissipation by keeping good ventilation near the motor fan.
12)In the case of ambient temperature40ºC, pls call the technical department.

After Sales Service

1.Maintenance Time and Warranty:Within 1 year after receiving goods.
2.Other ServiceIncluding modeling selection guide, installation guide, and problem resolution guide, etc.

FAQ

1.Q:Can you make as per customer drawing?
A: Yes, we offer customized service for customers accordingly. We can use customer’s nameplate for gearboxes.

2.Q:What is your terms of payment ?
   A: 30% deposit before production,balance T/T before delivery.
3.Q:Are you a trading company or manufacturer?
   A:We are a manufacurer with advanced equipment and experienced workers.
4.Q:What’s your production capacity?
   A:8000-9000 PCS/MONTH
5.Q:Free sample is available or not?
   A:Yes, we can supply free sample if customer agree to pay for the courier cost
6.Q:Do you have any certificate?
   A:Yes, we have CE certificate and SGS certificate report.
Contact information:
Ms Lingel Pan
For any questions just feel free ton contact me. Many thanks for your kind attention to our company!

Application: Motor, Machinery, Marine, Agricultural Machinery, Industry
Hardness: Hardened Tooth Surface
Installation: Vertical or Horizontal Type
Layout: Coaxial
Gear Shape: Planetary Gear
Step: Stepless
Samples:
US$ 45/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

variator motor

Are variator motors suitable for applications requiring precise speed control?

Yes, variator motors are generally suitable for applications requiring precise speed control. Here’s a detailed explanation:

Variator motors, also known as variable speed motors or adjustable speed motors, are designed to provide adjustable speed control over a wide range. They allow the user to vary the motor’s speed according to the specific requirements of the application. This flexibility makes them well-suited for applications that demand precise speed control.

Here are some reasons why variator motors are suitable for applications requiring precise speed control:

  • Speed Adjustment Range: Variator motors offer a wide range of adjustable speeds, allowing for precise control over the motor’s rotational speed. Depending on the specific model and type of variator motor, the speed adjustment range can vary from a few RPM (Revolutions Per Minute) to thousands of RPM. This versatility enables the motor to operate at different speeds, accommodating varying process or load requirements.
  • Smooth Speed Transitions: Variator motors can provide smooth and gradual speed transitions. They offer precise speed control without sudden jolts or jerks during acceleration or deceleration. This feature is especially important in applications where precise speed control is critical for maintaining product quality, preventing damage to sensitive equipment, or ensuring smooth operation of processes.
  • Speed Accuracy and Stability: Variator motors can achieve high speed accuracy and stability. They can maintain the desired speed setting within tight tolerances, minimizing deviations and fluctuations. This level of control is essential in applications that require precise synchronization, coordination with other system components, or adherence to specific speed profiles.
  • Control Options: Variator motors often come with various control options, allowing for precise speed adjustments. These options can include manual control through potentiometers or dials, digital control through interface panels or keypads, or even programmable control through communication protocols such as Modbus or Ethernet. The availability of different control options enhances the motor’s suitability for applications requiring precise speed control.
  • Response Time: Variator motors can typically achieve fast response times when adjusting the speed. They can quickly respond to speed commands or changes in the control signal, allowing for precise and immediate adjustments. This responsiveness is beneficial in applications where rapid speed changes or dynamic response is required to meet changing operational conditions.
  • Closed-Loop Control Capability: Some variator motors are equipped with closed-loop control capabilities. Closed-loop control involves using feedback sensors, such as encoders or tachometers, to continuously monitor the motor’s actual speed and compare it to the desired speed. The control system adjusts the motor’s speed based on this feedback, ensuring precise speed control and compensating for any variations or disturbances.
  • Application Versatility: Variator motors are versatile and can be used in a wide range of applications requiring precise speed control. They find applications in industries such as manufacturing, automation, robotics, HVAC (heating, ventilation, and air conditioning), conveyors, pumps, fans, and many others.

However, it’s important to note that the suitability of variator motors for precise speed control may vary depending on factors such as the specific motor model, control system, and the desired level of precision. It’s recommended to consult the motor manufacturer or an expert in motor control to determine the best solution for a particular application.

variator motor

Are there common troubleshooting issues associated with variator motor operation?

Yes, variator motors can experience common troubleshooting issues during their operation. Here’s a detailed explanation:

1. Overheating: Overheating is a common issue in variator motors and can be caused by factors such as excessive load, inadequate cooling, or motor inefficiencies. Overheating can lead to motor damage and reduced lifespan. Troubleshooting steps may involve checking for proper ventilation, ensuring adequate cooling mechanisms, and verifying that the motor is correctly sized for the application.

2. Noise and Vibration: Excessive noise and vibration can indicate problems with the motor’s bearings, misalignment, unbalanced loads, or mechanical issues. Troubleshooting may involve inspecting and lubricating bearings, aligning motor components, and addressing any mechanical faults.

3. Electrical Issues: Variator motors can experience electrical issues such as phase imbalances, voltage fluctuations, or short circuits. These issues can result in abnormal motor operation or failure. Troubleshooting may involve checking electrical connections, verifying voltage levels, and inspecting motor windings for damage.

4. Poor Performance: Poor motor performance can be caused by factors such as incorrect motor programming, inadequate power supply, or control system malfunctions. Troubleshooting steps may include recalibrating motor parameters, checking power supply stability, and verifying proper functioning of the control system.

5. Start-Up and Stopping Problems: Variator motors may encounter difficulties during start-up or stopping processes. These issues can be related to control system settings, mechanical constraints, or insufficient torque. Troubleshooting may involve adjusting acceleration and deceleration profiles, verifying mechanical components for obstructions, and ensuring sufficient torque for the application.

6. Communication and Networking: Variator motors equipped with communication and networking capabilities may experience troubleshooting issues related to connectivity, data exchange, or software compatibility. Troubleshooting steps may involve checking network configurations, updating firmware or software, and ensuring compatibility between devices and protocols.

7. Environmental Factors: Variator motor operation can be influenced by environmental factors such as temperature, humidity, or contaminants. Extreme temperatures, high humidity, or the presence of dust or debris can impact motor performance. Troubleshooting may involve implementing environmental controls, cleaning motor components, or providing additional protection against harsh conditions.

When troubleshooting variator motor issues, it’s recommended to consult the motor’s documentation, manufacturer’s guidelines, and seek assistance from qualified technicians or engineers. They can provide specific troubleshooting procedures and recommendations based on the motor model and application requirements.

Regular maintenance, periodic inspections, and adherence to operating guidelines can help prevent or mitigate common troubleshooting issues associated with variator motor operation.

variator motor

What is a variator motor, and how does it differ from traditional motors?

A variator motor, also known as a variable speed motor, is a type of motor that allows for adjustable speed control. Unlike traditional motors that operate at a fixed speed, variator motors provide the ability to vary the rotational speed to meet specific application requirements. Here are some key points differentiating variator motors from traditional motors:

  • Speed Control: The primary difference between variator motors and traditional motors is the ability to control the speed. Traditional motors typically operate at a fixed speed determined by the motor’s design and the frequency of the power supply. In contrast, variator motors feature mechanisms that allow for adjustable speed control, enabling users to increase or decrease the rotational speed as needed.
  • Operating Principle: Variator motors achieve variable speed control through various mechanisms. One common approach is the use of adjustable transmission systems, such as variable frequency drives (VFDs) or mechanical gearboxes. These systems allow for changes in the motor’s output speed by adjusting the input power frequency or gear ratio. Other variator motors may employ electronic or hydraulic control systems to modulate the motor’s speed based on input signals or user commands.
  • Application Flexibility: The ability to adjust the speed makes variator motors highly versatile and suitable for a wide range of applications. They can be employed in situations where precise speed control, energy efficiency, or the ability to adapt to changing operational requirements is critical. Variator motors find applications in industrial machinery, conveyors, pumps, fans, and other systems where speed modulation is beneficial.
  • Energy Efficiency: Variator motors often exhibit higher energy efficiency compared to traditional motors, especially when operating at reduced speeds. By adjusting the motor’s speed to match the required output, variator motors can minimize energy wastage associated with running at fixed speeds. This energy-saving capability can lead to reduced operating costs and improved overall system efficiency.
  • Cost and Complexity: Variator motors, due to their speed control capabilities, can be more complex and costly compared to traditional motors. The additional components required for speed modulation, such as variable frequency drives or control systems, can increase the overall system complexity and initial investment. However, the benefits of adjustable speed control and energy efficiency often outweigh the higher upfront costs in many applications.

In summary, a variator motor allows for adjustable speed control, enabling users to change the rotational speed to meet specific application requirements. With their ability to modulate speed, variator motors offer greater flexibility, energy efficiency, and application versatility compared to traditional motors.

China Standard Three Phase Worm Electric Geared Motor with Udl Speed Variator   vacuum pump	China Standard Three Phase Worm Electric Geared Motor with Udl Speed Variator   vacuum pump
editor by CX 2023-11-16

China best Yvf 0.75 Kw AC Induction and Speed Adjustable Three Phase Motor Yvp Electric DC Motor for Variator vacuum pump for ac

Product Description

Product Description

YVF 0.75 kw ac induction and Speed Adjustable Three Phase motor YVP electric dc motor for Variator

Product Introduction
YVF series frequency-variable and speed regulative three-phase asynchronous motor are suitable for running in frequency change and
speed regulation system which th epower is supplied by a frequency converter.This new series of product designed unitedly in the
country can be mated with all kinds of SPWM frequency changer and speed regulation devices and is equipped with a separate cooling
fan which ensure the motor for good cooling at various speed.They can be used in machine tool,metallugic industry,textile,printing
and dyeing,transportation,chemical industry,mine and for seep regulation of fans and pumps.

Model

YVF2-80M2-4

Power

0.75kw/1.0hp

Vol.Freq.

380 v / 50 hz (or customized)

Speed Range

90RPM~2900RPM

Current

2.08A

Torque range

3~50hz

Power Factor

50~100hz

Mounted Type

B3 (B5, B35, B14, B34,etc. are available)

 

 

Detailed Photos

 

 

Packaging & Shipping

 

FAQ

Q: Do you offer OEM service?
A: Yes, we can customize it as your request.

Q: What is your payment term?
A: TT. LC, AND WESTER UNION

Q: What is your lead time?
A: About 30 days after receiving deposit.

Q: What certificates do you have?
A: We have CE, ISO. And we can apply for specific certificate for different country such as SONCAP for Nigeria, SASO for Saudi Arabia, etc

Q: What about the warranty?
A: We offer 12month warranty period as the quality guarantee.

Q:What service do you offer?
A: Pre-sales service, in-sales service, after-sales service. If you become our local distributor, we can introduce end-customers to purchase from you.

Q:What’s your motor winding?
A: 100% copper winding

Q:Which port is near to you?
A: HangZhou port. And we can arrange to deliver HangZhou, ZheJiang , Urumqi, or other Chinese cities, too.

Q:Could you offer CHINAMFG Certification.
A: we can do as your request.

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 2,4,6,8,10 Pole
Samples:
US$ 88.5/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

variator motor

How does the size and power rating of variator motors impact their performance?

The size and power rating of variator motors have a significant impact on their performance. Here’s a detailed explanation of how these factors influence motor performance:

  • Torque Output: The size and power rating of a variator motor directly affect its torque output. Generally, larger and higher-rated motors can deliver higher torque levels, allowing them to handle heavier or more demanding loads. A motor with higher torque capability can provide better acceleration, overcome resistance, and maintain stable operation under varying load conditions.
  • Speed Range: The size and power rating of the motor also influence its speed range. Motors with higher power ratings can typically achieve a broader speed range, allowing for more flexibility in matching the motor’s speed to the application’s requirements. Smaller motors may have a more limited speed range, which can impact their suitability for certain applications that require a wide range of speeds.
  • Overload Capacity: Larger and higher-rated variator motors generally have a higher overload capacity. They can handle temporary increases in load or momentary peak demands without experiencing significant performance degradation or overheating. This makes them suitable for applications with intermittent or cyclical loads, where occasional high torque requirements may arise.
  • Efficiency: The size and power rating of a motor can impact its efficiency. In general, larger motors tend to have higher efficiencies, especially when operating near their rated capacity. Higher efficiency means less energy loss as heat and improved overall energy utilization. It’s important to select a motor with an appropriate power rating to ensure efficient operation while avoiding oversized motors that may operate at low efficiency levels.
  • Physical Dimensions: The size of a variator motor directly affects its physical dimensions and weight. Larger motors typically have larger physical footprints and may be heavier. The physical dimensions of the motor can impact its installation requirements, space availability, and integration into the overall system design. It’s important to consider the available space and mounting requirements when selecting a motor of a suitable size.
  • Heat Dissipation: The size and power rating of a motor influence its heat dissipation capabilities. Higher-rated motors generally generate more heat during operation, and larger motors have a larger surface area for heat dissipation. Adequate heat dissipation is crucial to prevent overheating and ensure the motor’s long-term reliability. It’s important to consider the motor’s cooling requirements, such as ventilation or cooling mechanisms, to maintain optimal operating temperatures.
  • Cost: The size and power rating of a variator motor can impact its cost. Generally, larger and higher-rated motors tend to be more expensive than smaller ones due to the increased materials, manufacturing complexity, and performance capabilities. It’s important to balance the motor’s size, power rating, and associated cost with the specific requirements and budget of the application.

In summary, the size and power rating of variator motors significantly influence their performance in terms of torque output, speed range, overload capacity, efficiency, physical dimensions, heat dissipation, and cost. It’s crucial to carefully consider these factors when selecting a motor to ensure it meets the requirements of the application and delivers optimal performance and reliability.

variator motor

Are there cost considerations when choosing variator motors for industrial use?

Yes, there are several cost considerations that come into play when choosing variator motors for industrial use. Here’s a detailed explanation:

When selecting variator motors for industrial applications, it’s important to evaluate not only the initial purchase cost but also the overall cost of ownership throughout the motor’s lifespan. Here are some key cost considerations to keep in mind:

  • Motor Cost: The initial purchase cost of the variator motor is an important consideration. The cost can vary depending on factors such as motor power rating, brand, quality, and additional features. It’s essential to compare prices from different suppliers and manufacturers to ensure a competitive and reasonable cost for the motor.
  • Efficiency: The energy efficiency of the variator motor can have a significant impact on long-term operating costs. More efficient motors consume less energy, resulting in reduced electricity bills. It’s advisable to choose high-efficiency motors that meet or exceed the minimum efficiency standards set by regulatory bodies, such as the International Electrotechnical Commission (IEC) or the National Electrical Manufacturers Association (NEMA). Although high-efficiency motors may have a higher initial cost, the energy savings over the motor’s lifespan can offset the additional investment.
  • Maintenance and Service: Consider the maintenance requirements and associated costs of variator motors. Motors that require regular maintenance, such as lubrication, bearing replacements, or brush inspections, may have higher maintenance costs compared to maintenance-free or sealed motor designs. It’s important to factor in the anticipated maintenance needs and costs when evaluating the overall cost of ownership.
  • Durability and Reliability: Variator motors that are built to withstand harsh operating conditions and have a long service life can offer cost advantages in the long run. Although more durable and reliable motors may have a higher upfront cost, they can minimize the need for premature motor replacements, reduce downtime, and lower maintenance and repair expenses. It’s crucial to assess the motor’s quality, reputation, and warranty provisions to gauge its expected durability and reliability.
  • Control and Automation: Variator motors often come with various control options and compatibility with automation systems. While these features can enhance operational efficiency and control, they may have associated costs. Consider the cost of control devices, such as variable frequency drives (VFDs), sensors, and monitoring equipment. Additionally, if integrating the motor into an existing automation system, ensure compatibility and account for any necessary upgrades or modifications.
  • Application-Specific Requirements: Some industrial applications may have specific motor requirements that can impact costs. For example, if the motor needs to operate in extreme temperatures, hazardous environments, or corrosive atmospheres, special motor designs or materials may be necessary, which can increase costs. It’s important to evaluate any application-specific requirements and associated costs when selecting variator motors.
  • Future Expandability: Consider the scalability and expandability of the motor system. If there are possibilities of future capacity expansions or modifications to the industrial process, choosing a motor that can accommodate such changes can prevent the need for a costly motor replacement in the future.

By carefully considering these cost factors, industrial users can make informed decisions when selecting variator motors that strike a balance between upfront costs and long-term operational expenses. It’s advisable to consult with motor suppliers, engineers, and industry experts to assess the specific cost considerations relevant to the industrial application and ensure the optimal motor choice.

variator motor

In which industries are variator motors commonly used for different applications?

Variator motors, with their adjustable speed control capabilities, find applications in various industries where precise speed control, energy efficiency, and adaptability to changing operational requirements are essential. Here are some industries where variator motors are commonly used for different applications:

  • Industrial Manufacturing: Variator motors are extensively utilized in industrial manufacturing processes. They can be found in machinery and equipment such as conveyors, mixers, extruders, and packaging machines. The ability to adjust the speed of these motors allows for efficient material handling, mixing, blending, and product packaging.
  • Material Handling and Logistics: In the material handling and logistics industry, variator motors are commonly employed in conveyor systems. These motors enable precise control of product movement, allowing for smooth and efficient transfer of goods in manufacturing plants, warehouses, airports, and distribution centers.
  • Pumping and Water Treatment: Variator motors are utilized in pumping systems for water treatment, wastewater management, and irrigation. The adjustable speed control feature enables the optimization of pumping rates based on demand, resulting in energy savings and improved system efficiency.
  • HVAC (Heating, Ventilation, and Air Conditioning): Variator motors play a crucial role in HVAC systems, particularly in fans and blowers. By adjusting the motor speed, these systems can modulate the airflow and temperature control, ensuring optimal comfort and energy efficiency in commercial buildings, residential complexes, and industrial facilities.
  • Automotive Industry: Variator motors are used in various applications within the automotive industry. They can be found in vehicle cooling systems, power steering systems, and engine control units. The ability to adjust the motor speed allows for efficient cooling, precise steering assistance, and optimal engine performance.
  • Renewable Energy: Variator motors are employed in renewable energy systems such as wind turbines and solar tracking systems. In wind turbines, variator motors enable the adjustment of blade pitch for optimal power generation. In solar tracking systems, they control the movement of solar panels to maximize exposure to sunlight throughout the day.
  • Food and Beverage: Variator motors find applications in the food and beverage industry, particularly in mixing, blending, and processing equipment. They enable precise control of speed and agitation, ensuring consistent product quality and efficient production processes.

These are just a few examples of industries where variator motors are commonly used. Their versatility and ability to provide adjustable speed control make them suitable for a wide range of applications across different sectors.

China best Yvf 0.75 Kw AC Induction and Speed Adjustable Three Phase Motor Yvp Electric DC Motor for Variator   vacuum pump for ac	China best Yvf 0.75 Kw AC Induction and Speed Adjustable Three Phase Motor Yvp Electric DC Motor for Variator   vacuum pump for ac
editor by CX 2023-10-23

China Manufacturer Supply Best Selling IP20 2 Phase NEMA 34 Electric Stepping Stepper Gear Motor with Planetary Gearbox motor driver

Product Description

Merchandise Description

Stepper Motor Description

Large Torque 
Substantial Accuracy 
Smooth Movement 
 
Stepper motors, AC servo motors and brushless dc motors are avaiable to personalized for the entire world, NEMA 11, fourteen, sixteen, 17, 23, 24, 34 stepper motor, 50W, 100W, 200W, 400W, 500W, 750W, 1000W, 1200W AC servo motor, and brushless dc motor are all incorporated. 
 
The derived items are broadly utilized in ATM machines, electronic scanners, stylus printers, plotters, slot equipment, CD-ROM drivers, phase lighting, digital camera lenses, CNC equipment, health care machines, 3D printers, cleaning devices and quadcopter for sector and our life.
 
All the derived merchandise of us can be tailored for your needs 

 

Merchandise Parameters

Motor Technological Specification

Flange

NEMA 34

Stage angle

one.8 [°] ± 5 [%]

Phase resistance

1.06 [Ohm] ± 10 [%]

Section inductance

10. [mH] ± twenty [%]

Rotor inertia

4000 [g.cm²]

Ambient temperature

-20 [°C] ~ +fifty [°C]

Temperature increase

one zero five [K]

Dielectric toughness

1000 [VAC 1 Moment]

Class safety

IP20

Max. shaft radial load

220 [N]

Max. shaft axial load

sixty [N]

Weight

4500 [g.]

Mechanical Drawing (in mm)

 

Nema Model Length Step Angle Current/Period Resistance/Stage Inductance/Phase Holding Torque # of Qualified prospects Rotor Inertia
(L)mm ( °) A Ω mH N.M. No. g.cm2
Open LOOP Phase MOTOR
Nema8 EW08-210H 37.8 one.80  one.00  4.30  one.70  .04min four.00  2.90 
Nema11 EW11-one hundred ten thirty.one 1.80  one.00  4.50  three.80  .08min 4.00  five.00 
EW11-110H 30.1 one.80  1.00  4.50  4.00  .07min 4.00  nine.00 
EW11-310 50.four 1.80  one.00  2.50  2.20  .14min four.00  20.00 
EW11-310D 50.4 1.80  1.00  2.50  2.20  .14min four.00  20.00 
Nema14 EW14-one hundred ten 25.5 1.80  1.00  3.30  three.80  .17min 4.00  twenty five.00 
EW14-210 forty.5 one.80  one.00  4.00  six.10  .2min four.00  twenty five.00 
Nema17 EW17-220 33.seven 1.80  2.00  .70  one.40  .3min four.00  forty.00 
EW17-320 39.2 1.80  two.00  one.00  1.80  .45min 4.00  60.00 
EW17-320D 39.two 1.80  2.00  1.00  one.80  .45min 4.00  sixty.00 
EW17-420 forty seven.two one.80  2.00  1.00  2.00  .56min 4.00  80.00 
EW17-420D forty seven.two one.80  2.00  1.00  2.00  .56min 4.00  eighty.00 
EW17-420M eighty.one 1.80  2.00  1.35  three.20  .48min 4.00  seventy seven.00 
EW17-520 60 one.80  two.00  one.35  2.90  .70min four.00  one hundred fifteen.00 
EW17-520M 99.one one.80  2.00  one.77  four.00  .72min 4.00  one hundred ten.00 
Nema23 EW23-a hundred and forty forty one.9 one.80  4.00  .37  one.00  .70min 4.00  170.00 
EW23-240 fifty two.9 one.80  four.00  .45  1.70  one.25min 4.00  290.00 
EW23-240D fifty two.nine 1.80  four.00  .45  1.70  one.25min 4.00  290.00 
EW23-240M 95.5 1.80  4.00  .44  one.40  1.20min 4.00  480.00 
EW23-340 76.4 one.80  4.00  .50  one.80  two.00min four.00  520.00 
EW23-340D seventy six.4 one.80  four.00  .50  1.80  two.00min four.00  520.00 
EW23-350M 116.five 1.80  5.00  .40  1.80  two.00min four.00  480.00 
Nema24 EW24-240 54.5 one.80  4.00  .45  1.20  1.40min four.00  450.00 
EW24-440 eighty five.five one.80  4.00  .80  3.00  three.00min four.00  900.00 
EW24-450M 125.six one.80  5.00  .42  one.80  3.00min four.00  900.00 
Nema34 EW34-260 seventy nine.5 1.80  6.00  .38  two.80  4.5min 4.00  1900.00 
EW34-360 ninety nine 1.80  six.00  .47  three.90  6.00min 4.00  2700.00 
EW34-460M 155.three 1.80  six.00  .54  five.00  8.20min four.00  3800.00 
EW34-560 129 one.80  six.00  .64  six.00  nine.00min four.00  4000.00 
EW34-660 159.5 1.80  6.00  .72  7.30  12min. 4.00  5000.00 
EH34-530 129 one.80  3.60  one.06  ten.00  7.1min 4.00  4000.00 

 

 

 

 

 

 

 

Company Profile

     Getting gain of the proactive local climate of the 70s, in 1977 the engineer Felice Caldi, who experienced usually been a passionate builder and inventor, founded an progressive organization, functioning internationally in the area of software program for industrial equipment.
Since then, this modest business based mostly in Lodi has appreciated continuous successes connected to revolutionary merchandise and chopping edge “ideal in course” technologies in the subject of industrial automation, as confirmed by the numerous patents submitted for the duration of the many years as properly as the essential awards provided to it by the Chamber of Commerce of Milan and of the Lombardy Area.
    The company, many thanks to its successes over time, has developed substantially, increasing its revenue network overseas and opening yet another organization in China to control the sales flow in the Asian marketplace. 
    At any time attentive to the dynamics and requirements of the automation market place, constantly evolving and continually seeking technological innovation, At any time Elettronica has been CZPT to react to all the technological problems that have arisen over the a long time, supplying answers CZPT to make its customer’s machines much more and more carrying out and very aggressive.
    And it is precisely to underline the importance and the uniqueness of every single one customer that we layout, with treatment and determination, hugely customised automation remedies, that are CZPT to flawlessly meet up with any request, equally with regards to software program and hardware.
    Our crew of mechatronic engineers can indeed customise the software program with specially developed firmware, and it can also adapt the motor by customising, for illustration, the duration of the cables or the diameter of the crankshaft and the IP security diploma, all strictly primarily based on the customer’s specialized requirements.

 

 

 

US $3-10
/ Piece
|
1 Piece

(Min. Order)

###

Application: Medical and Laboratory Equipment
Speed: Low Speed
Number of Stator: Two-Phase
Excitation Mode: HB-Hybrid
Function: Driving
Number of Poles: 2

###

Customization:

###

Flange
NEMA 34
Step angle
1.8 [°] ± 5 [%]
Phase resistance
1.06 [Ohm] ± 10 [%]
Phase inductance
10.0 [mH] ± 20 [%]
Rotor inertia
4000 [g.cm²]
Ambient temperature
-20 [°C] ~ +50 [°C]
Temperature rise
105 [K]
Dielectric strength
1000 [VAC 1 Minute]
Class protection
IP20
Max. shaft radial load
220 [N]
Max. shaft axial load
60 [N]
Weight
4500 [g.]

###

Nema Model Length Step Angle Current/Phase Resistance/Phase Inductance/Phase Holding Torque # of Leads Rotor Inertia
(L)mm ( °) A Ω mH N.M. No. g.cm2
OPEN LOOP STEP MOTOR
Nema8 EW08-210H 37.8 1.80  1.00  4.30  1.70  0.04min 4.00  2.90 
Nema11 EW11-110 30.1 1.80  1.00  4.50  3.80  0.08min 4.00  5.00 
EW11-110H 30.1 1.80  1.00  4.50  4.00  0.07min 4.00  9.00 
EW11-310 50.4 1.80  1.00  2.50  2.20  0.14min 4.00  20.00 
EW11-310D 50.4 1.80  1.00  2.50  2.20  0.14min 4.00  20.00 
Nema14 EW14-110 25.5 1.80  1.00  3.30  3.80  0.17min 4.00  25.00 
EW14-210 40.5 1.80  1.00  4.00  6.10  0.2min 4.00  25.00 
Nema17 EW17-220 33.7 1.80  2.00  0.70  1.40  0.3min 4.00  40.00 
EW17-320 39.2 1.80  2.00  1.00  1.80  0.45min 4.00  60.00 
EW17-320D 39.2 1.80  2.00  1.00  1.80  0.45min 4.00  60.00 
EW17-420 47.2 1.80  2.00  1.00  2.00  0.56min 4.00  80.00 
EW17-420D 47.2 1.80  2.00  1.00  2.00  0.56min 4.00  80.00 
EW17-420M 80.1 1.80  2.00  1.35  3.20  0.48min 4.00  77.00 
EW17-520 60 1.80  2.00  1.35  2.90  0.70min 4.00  115.00 
EW17-520M 99.1 1.80  2.00  1.77  4.00  0.72min 4.00  110.00 
Nema23 EW23-140 41.9 1.80  4.00  0.37  1.00  0.70min 4.00  170.00 
EW23-240 52.9 1.80  4.00  0.45  1.70  1.25min 4.00  290.00 
EW23-240D 52.9 1.80  4.00  0.45  1.70  1.25min 4.00  290.00 
EW23-240M 95.5 1.80  4.00  0.44  1.40  1.20min 4.00  480.00 
EW23-340 76.4 1.80  4.00  0.50  1.80  2.00min 4.00  520.00 
EW23-340D 76.4 1.80  4.00  0.50  1.80  2.00min 4.00  520.00 
EW23-350M 116.5 1.80  5.00  0.40  1.80  2.00min 4.00  480.00 
Nema24 EW24-240 54.5 1.80  4.00  0.45  1.20  1.40min 4.00  450.00 
EW24-440 85.5 1.80  4.00  0.80  3.00  3.00min 4.00  900.00 
EW24-450M 125.6 1.80  5.00  0.42  1.80  3.00min 4.00  900.00 
Nema34 EW34-260 79.5 1.80  6.00  0.38  2.80  4.5min 4.00  1900.00 
EW34-360 99 1.80  6.00  0.47  3.90  6.00min 4.00  2700.00 
EW34-460M 155.3 1.80  6.00  0.54  5.00  8.20min 4.00  3800.00 
EW34-560 129 1.80  6.00  0.64  6.00  9.00min 4.00  4000.00 
EW34-660 159.5 1.80  6.00  0.72  7.30  12min. 4.00  5000.00 
EH34-530 129 1.80  3.60  1.06  10.00  7.1min 4.00  4000.00 
US $3-10
/ Piece
|
1 Piece

(Min. Order)

###

Application: Medical and Laboratory Equipment
Speed: Low Speed
Number of Stator: Two-Phase
Excitation Mode: HB-Hybrid
Function: Driving
Number of Poles: 2

###

Customization:

###

Flange
NEMA 34
Step angle
1.8 [°] ± 5 [%]
Phase resistance
1.06 [Ohm] ± 10 [%]
Phase inductance
10.0 [mH] ± 20 [%]
Rotor inertia
4000 [g.cm²]
Ambient temperature
-20 [°C] ~ +50 [°C]
Temperature rise
105 [K]
Dielectric strength
1000 [VAC 1 Minute]
Class protection
IP20
Max. shaft radial load
220 [N]
Max. shaft axial load
60 [N]
Weight
4500 [g.]

###

Nema Model Length Step Angle Current/Phase Resistance/Phase Inductance/Phase Holding Torque # of Leads Rotor Inertia
(L)mm ( °) A Ω mH N.M. No. g.cm2
OPEN LOOP STEP MOTOR
Nema8 EW08-210H 37.8 1.80  1.00  4.30  1.70  0.04min 4.00  2.90 
Nema11 EW11-110 30.1 1.80  1.00  4.50  3.80  0.08min 4.00  5.00 
EW11-110H 30.1 1.80  1.00  4.50  4.00  0.07min 4.00  9.00 
EW11-310 50.4 1.80  1.00  2.50  2.20  0.14min 4.00  20.00 
EW11-310D 50.4 1.80  1.00  2.50  2.20  0.14min 4.00  20.00 
Nema14 EW14-110 25.5 1.80  1.00  3.30  3.80  0.17min 4.00  25.00 
EW14-210 40.5 1.80  1.00  4.00  6.10  0.2min 4.00  25.00 
Nema17 EW17-220 33.7 1.80  2.00  0.70  1.40  0.3min 4.00  40.00 
EW17-320 39.2 1.80  2.00  1.00  1.80  0.45min 4.00  60.00 
EW17-320D 39.2 1.80  2.00  1.00  1.80  0.45min 4.00  60.00 
EW17-420 47.2 1.80  2.00  1.00  2.00  0.56min 4.00  80.00 
EW17-420D 47.2 1.80  2.00  1.00  2.00  0.56min 4.00  80.00 
EW17-420M 80.1 1.80  2.00  1.35  3.20  0.48min 4.00  77.00 
EW17-520 60 1.80  2.00  1.35  2.90  0.70min 4.00  115.00 
EW17-520M 99.1 1.80  2.00  1.77  4.00  0.72min 4.00  110.00 
Nema23 EW23-140 41.9 1.80  4.00  0.37  1.00  0.70min 4.00  170.00 
EW23-240 52.9 1.80  4.00  0.45  1.70  1.25min 4.00  290.00 
EW23-240D 52.9 1.80  4.00  0.45  1.70  1.25min 4.00  290.00 
EW23-240M 95.5 1.80  4.00  0.44  1.40  1.20min 4.00  480.00 
EW23-340 76.4 1.80  4.00  0.50  1.80  2.00min 4.00  520.00 
EW23-340D 76.4 1.80  4.00  0.50  1.80  2.00min 4.00  520.00 
EW23-350M 116.5 1.80  5.00  0.40  1.80  2.00min 4.00  480.00 
Nema24 EW24-240 54.5 1.80  4.00  0.45  1.20  1.40min 4.00  450.00 
EW24-440 85.5 1.80  4.00  0.80  3.00  3.00min 4.00  900.00 
EW24-450M 125.6 1.80  5.00  0.42  1.80  3.00min 4.00  900.00 
Nema34 EW34-260 79.5 1.80  6.00  0.38  2.80  4.5min 4.00  1900.00 
EW34-360 99 1.80  6.00  0.47  3.90  6.00min 4.00  2700.00 
EW34-460M 155.3 1.80  6.00  0.54  5.00  8.20min 4.00  3800.00 
EW34-560 129 1.80  6.00  0.64  6.00  9.00min 4.00  4000.00 
EW34-660 159.5 1.80  6.00  0.72  7.30  12min. 4.00  5000.00 
EH34-530 129 1.80  3.60  1.06  10.00  7.1min 4.00  4000.00 

Dynamic Modeling of a Planetary Motor

A planetary gear motor consists of a series of gears rotating in perfect synchrony, allowing them to deliver torque in a higher output capacity than a spur gear motor. Unlike the planetary motor, spur gear motors are simpler to build and cost less, but they are better for applications requiring lower torque output. That is because each gear carries the entire load. The following are some key differences between the two types of gearmotors.

planetary gear system

A planetary gear transmission is a type of gear mechanism that transfers torque from one source to another, usually a rotary motion. Moreover, this type of gear transmission requires dynamic modeling to investigate its durability and reliability. Previous studies included both uncoupled and coupled meshing models for the analysis of planetary gear transmission. The combined model considers both the shaft structural stiffness and the bearing support stiffness. In some applications, the flexible planetary gear may affect the dynamic response of the system.
In a planetary gear device, the axial end surface of the cylindrical portion is rotatable relative to the separating plate. This mechanism retains lubricant. It is also capable of preventing foreign particles from entering the planetary gear system. A planetary gear device is a great choice if your planetary motor’s speed is high. A high-quality planetary gear system can provide a superior performance than conventional systems.
A planetary gear system is a complex mechanism, involving three moving links that are connected to each other through joints. The sun gear acts as an input and the planet gears act as outputs. They rotate about their axes at a ratio determined by the number of teeth on each gear. The sun gear has 24 teeth, while the planet gears have three-quarters that ratio. This ratio makes a planetary motor extremely efficient.
Motor

planetary gear train

To predict the free vibration response of a planetary motor gear train, it is essential to develop a mathematical model for the system. Previously, static and dynamic models were used to study the behavior of planetary motor gear trains. In this study, a dynamic model was developed to investigate the effects of key design parameters on the vibratory response. Key parameters for planetary gear transmissions include the structure stiffness and mesh stiffness, and the mass and location of the shaft and bearing supports.
The design of the planetary motor gear train consists of several stages that can run with variable input speeds. The design of the gear train enables the transmission of high torques by dividing the load across multiple planetary gears. In addition, the planetary gear train has multiple teeth which mesh simultaneously in operation. This design also allows for higher efficiency and transmittable torque. Here are some other advantages of planetary motor gear trains. All these advantages make planetary motor gear trains one of the most popular types of planetary motors.
The compact footprint of planetary gears allows for excellent heat dissipation. High speeds and sustained performances will require lubrication. This lubricant can also reduce noise and vibration. But if these characteristics are not desirable for your application, you can choose a different gear type. Alternatively, if you want to maintain high performance, a planetary motor gear train will be the best choice. So, what are the advantages of planetary motor gears?

planetary gear train with fixed carrier train ratio

The planetary gear train is a common type of transmission in various machines. Its main advantages are high efficiency, compactness, large transmission ratio, and power-to-weight ratio. This type of gear train is a combination of spur gears, single-helical gears, and herringbone gears. Herringbone planetary gears have lower axial force and high load carrying capacity. Herringbone planetary gears are commonly used in heavy machinery and transmissions of large vehicles.
To use a planetary gear train with a fixed carrier train ratio, the first and second planets must be in a carrier position. The first planet is rotated so that its teeth mesh with the sun’s. The second planet, however, cannot rotate. It must be in a carrier position so that it can mesh with the sun. This requires a high degree of precision, so the planetary gear train is usually made of multiple sets. A little analysis will simplify this design.
The planetary gear train is made up of three components. The outer ring gear is supported by a ring gear. Each gear is positioned at a specific angle relative to one another. This allows the gears to rotate at a fixed rate while transferring the motion. This design is also popular in bicycles and other small vehicles. If the planetary gear train has several stages, multiple ring gears may be shared. A stationary ring gear is also used in pencil sharpener mechanisms. Planet gears are extended into cylindrical cutters. The ring gear is stationary and the planet gears rotate around a sun axis. In the case of this design, the outer ring gear will have a -3/2 planet gear ratio.
Motor

planetary gear train with zero helix angle

The torque distribution in a planetary gear is skewed, and this will drastically reduce the load carrying capacity of a needle bearing, and therefore the life of the bearing. To better understand how this can affect a gear train, we will examine two studies conducted on the load distribution of a planetary gear with a zero helix angle. The first study was done with a highly specialized program from the bearing manufacturer INA/FAG. The red line represents the load distribution along a needle roller in a zero helix gear, while the green line corresponds to the same distribution of loads in a 15 degree helix angle gear.
Another method for determining a gear’s helix angle is to consider the ratio of the sun and planet gears. While the sun gear is normally on the input side, the planet gears are on the output side. The sun gear is stationary. The two gears are in engagement with a ring gear that rotates 45 degrees clockwise. Both gears are attached to pins that support the planet gears. In the figure below, you can see the tangential and axial gear mesh forces on a planetary gear train.
Another method used for calculating power loss in a planetary gear train is the use of an auto transmission. This type of gear provides balanced performance in both power efficiency and load capacity. Despite the complexities, this method provides a more accurate analysis of how the helix angle affects power loss in a planetary gear train. If you’re interested in reducing the power loss of a planetary gear train, read on!

planetary gear train with spur gears

A planetary gearset is a type of mechanical drive system that uses spur gears that move in opposite directions within a plane. Spur gears are one of the more basic types of gears, as they don’t require any specialty cuts or angles to work. Instead, spur gears use a complex tooth shape to determine where the teeth will make contact. This in turn, will determine the amount of power, torque, and speed they can produce.
A two-stage planetary gear train with spur gears is also possible to run at variable input speeds. For such a setup, a mathematical model of the gear train is developed. Simulation of the dynamic behaviour highlights the non-stationary effects, and the results are in good agreement with the experimental data. As the ratio of spur gears to spur gears is not constant, it is called a dedendum.
A planetary gear train with spur gears is a type of epicyclic gear train. In this case, spur gears run between gears that contain both internal and external teeth. The circumferential motion of the spur gears is analogous to the rotation of planets in the solar system. There are four main components of a planetary gear train. The planet gear is positioned inside the sun gear and rotates to transfer motion to the sun gear. The planet gears are mounted on a joint carrier that is connected to the output shaft.
Motor

planetary gear train with helical gears

A planetary gear train with helical teeth is an extremely powerful transmission system that can provide high levels of power density. Helical gears are used to increase efficiency by providing a more efficient alternative to conventional worm gears. This type of transmission has the potential to improve the overall performance of a system, and its benefits extend far beyond the power density. But what makes this transmission system so appealing? What are the key factors to consider when designing this type of transmission system?
The most basic planetary train consists of the sun gear, planet gear, and ring gear elements. The number of planets varies, but the basic structure of planetary gears is similar. A simple planetary geartrain has the sun gear driving a carrier assembly. The number of planets can be as low as two or as high as six. A planetary gear train has a low mass inertia and is compact and reliable.
The mesh phase properties of a planetary gear train are particularly important in designing the profiles. Various parameters such as mesh phase difference and tooth profile modifications must be studied in depth in order to fully understand the dynamic characteristics of a PGT. These factors, together with others, determine the helical gears’ performance. It is therefore essential to understand the mesh phase of a planetary gear train to design it effectively.

China Manufacturer Supply Best Selling IP20 2 Phase NEMA 34 Electric Stepping Stepper Gear Motor with Planetary Gearbox     motor driver	China Manufacturer Supply Best Selling IP20 2 Phase NEMA 34 Electric Stepping Stepper Gear Motor with Planetary Gearbox     motor driver
editor by czh 2023-01-26

China 11kw 18kw 18.5kw 22kw 30kw 37kw 45kw 55kw 75kw 380V Ye2 Three Phase AC Electric Induction Motor car motor

Warranty: 3months-1year
Model Number: Y Y2 Y3
Type: ac electric motor
Frequency: 50HZ/60HZ
Phase: Three-phase
Protect Feature: Totally Enclosed
AC Voltage: 380v±5% and customize
Efficiency: IE 1
Insulation class: B/F
Apply machines and equipments: drilling machines ,blowers , pumps and so on
Cooling type: IC0141
Duty: S1
Color: blue /yellow/red/customize
Brand: CZPT and OEM
Protection class: IP54/IP55
Certification1: CCC
Certification: ISO9001-2008
Certification2: ce
Packaging Details: electric motor 35kwBubbles, carton and plywood
Port: HangZhou ZheJiang HangZhou HangZhou

Y series motors are totally enclosed and fan cooled(TFEC).Three-phase squirrel cage induction motors. They are newly designed in conformity with the relevant requirements oi IEC standards. Y series motors have outstanding performance, such as high efficiency, energy-saving, high starting torque, low noise, little vibration, reliable operation and easy maintenance, etc.Y series motors are widely used in many places, where do exist combustible, explosive or corrosive, and with any specialrequirements, such as drilling machines, pumps, fans, mixer, transport machines, food machines agriculture machines and equipments etc.Y2 Series motors are totally enclosed fan cooled(TEFC). squirrel cage three-phase induction motors,developed with new technique They are renewal and upgrading products of Y series The mounting dimension is fully conformed with IEC standard .The motors have the merits of beautiful modeling .compact structure ,low noise,high efficiency,large staring torque, easy serving, etc The motors are adopted with F class insulation and designed with assessing method for insulationpractice. It enhances greatly motor’s safety and reliability.These motors have reached an international advanced level Y2 series motors can be widely used in various machines and equipments. such as drilling machines,blowers,pumps,compressors,transporters,agricultural and food processing machines.Y3 series three-phase asynchronous motors, developed with new techniques. Aluminium body.Y3 series motors are defined as totally enclosed, fan cooled, squirrel cage type and noted for their novel design, beautifulmodel, compact structure, low noise, high efficiency, large torque, excellent starting performance, easy serving, etc. The motorsare adopted with F class insulation and designed with assessing method for insulation system according to international practice,it have greatly reached an international advanced level of the same kind of products at the initial days of 90s.Y3 series motors can be widely used as driving equipments of various machineries, such as machine tools, blowers, pumps,compressors, transporters, agricultural and food processing. Pedestal installation size and centre height and other indexes of themotor completely measured by Y3 series three-phase asynchronous motor. Product parameters Company profile Why choose us Packging &Shipping FAQ Feedback

Benefits of a Planetary Motor

If you’re looking for an affordable way to power a machine, consider purchasing a Planetary Motor. These units are designed to provide a massive range of gear reductions, and are capable of generating much higher torques and torque density than other types of drive systems. This article will explain why you should consider purchasing one for your needs. And we’ll also discuss the differences between a planetary and spur gear system, as well as how you can benefit from them.

planetary gears

Planetary gears in a motor are used to reduce the speed of rotation of the armature 8. The reduction ratio is determined by the structure of the planetary gear device. The output shaft 5 rotates through the device with the assistance of the ring gear 4. The ring gear 4 engages with the pinion 3 once the shaft is rotated to the engagement position. The transmission of rotational torque from the ring gear to the armature causes the motor to start.
The axial end surface of a planetary gear device has two circular grooves 21. The depressed portion is used to retain lubricant. This lubricant prevents foreign particles from entering the planetary gear space. This feature enables the planetary gear device to be compact and lightweight. The cylindrical portion also minimizes the mass inertia. In this way, the planetary gear device can be a good choice for a motor with limited space.
Because of their compact footprint, planetary gears are great for reducing heat. In addition, this design allows them to be cooled. If you need high speeds and sustained performance, you may want to consider using lubricants. The lubricants present a cooling effect and reduce noise and vibration. If you want to maximize the efficiency of your motor, invest in a planetary gear hub drivetrain.
The planetary gear head has an internal sun gear that drives the multiple outer gears. These gears mesh together with the outer ring that is fixed to the motor housing. In industrial applications, planetary gears are used with an increasing number of teeth. This distribution of power ensures higher efficiency and transmittable torque. There are many advantages of using a planetary gear motor. These advantages include:
Motor

planetary gearboxes

A planetary gearbox is a type of drivetrain in which the input and output shafts are connected with a planetary structure. A planetary gearset can have three main components: an input gear, a planetary output gear, and a stationary position. Different gears can be used to change the transmission ratios. The planetary structure arrangement gives the planetary gearset high rigidity and minimizes backlash. This high rigidity is crucial for quick start-stop cycles and rotational direction.
Planetary gears need to be lubricated regularly to prevent wear and tear. In addition, transmissions must be serviced regularly, which can include fluid changes. The gears in a planetary gearbox will wear out with time, and any problems should be repaired immediately. However, if the gears are damaged, or if they are faulty, a planetary gearbox manufacturer will repair it for free.
A planetary gearbox is typically a 2-speed design, but professional manufacturers can provide triple and single-speed sets. Planetary gearboxes are also compatible with hydraulic, electromagnetic, and dynamic braking systems. The first step to designing a planetary gearbox is defining your application and the desired outcome. Famous constructors use a consultative modeling approach, starting each project by studying machine torque and operating conditions.
As the planetary gearbox is a compact design, space is limited. Therefore, bearings need to be selected carefully. The compact needle roller bearings are the most common option, but they cannot tolerate large axial forces. Those that can handle high axial forces, such as worm gears, should opt for tapered roller bearings. So, what are the advantages and disadvantages of a helical gearbox?

planetary gear motors

When we think of planetary gear motors, we tend to think of large and powerful machines, but in fact, there are many smaller, more inexpensive versions of the same machine. These motors are often made of plastic, and can be as small as six millimeters in diameter. Unlike their larger counterparts, they have only one gear in the transmission, and are made with a small diameter and small number of teeth.
They are similar to the solar system, with the planets rotating around a sun gear. The planet pinions mesh with the ring gear inside the sun gear. All of these gears are connected by a planetary carrier, which is the output shaft of the gearbox. The ring gear and planetary carrier assembly are attached to each other through a series of joints. When power is applied to any of these members, the entire assembly will rotate.
Compared to other configurations, planetary gearmotors are more complicated. Their construction consists of a sun gear centered in the center and several smaller gears that mesh with the central sun gear. These gears are enclosed in a larger internal tooth gear. This design allows them to handle larger loads than conventional gear motors, as the load is distributed among several gears. This type of motor is typically more expensive than other configurations, but can withstand the higher-load requirements of some machines.
Because they are cylindrical in shape, planetary gear motors are incredibly versatile. They can be used in various applications, including automatic transmissions. They are also used in applications where high-precision and speed are necessary. Furthermore, the planetary gear motor is robust and is characterized by low vibrations. The advantages of using a planetary gear motor are vast and include:
Motor

planetary gears vs spur gears

A planetary motor uses multiple teeth to share the load of rotating parts. This gives planetary gears high stiffness and low backlash – often as low as one or two arc minutes. These characteristics are important for applications that undergo frequent start-stop cycles or rotational direction changes. This article discusses the benefits of planetary gears and how they differ from spur gears. You can watch the animation below for a clearer understanding of how they operate and how they differ from spur gears.
Planetary gears move in a periodic manner, with a relatively small meshing frequency. As the meshing frequency increases, the amplitude of the frequency also increases. The amplitude of this frequency is small at low clearance values, and increases dramatically at higher clearance levels. The amplitude of the frequency is higher when the clearance reaches 0.2-0.6. The amplitude increases rapidly, whereas wear increases slowly after the initial 0.2-0.6-inch-wide clearance.
In high-speed, high-torque applications, a planetary motor is more effective. It has multiple contact points for greater torque and higher speed. If you are not sure which type to choose, you can consult with an expert and design a custom gear. If you are unsure of what type of motor you need, contact Twirl Motor and ask for help choosing the right one for your application.
A planetary gear arrangement offers a number of advantages over traditional fixed-axis gear system designs. The compact size allows for lower loss of effectiveness, and the more planets in the gear system enhances the torque density and capacity. Another benefit of a planetary gear system is that it is much stronger and more durable than its spur-gear counterpart. Combined with its many advantages, a planetary gear arrangement offers a superior solution to your shifting needs.
Motor

planetary gearboxes as a compact alternative to pinion-and-gear reducers

While traditional pinion-and-gear reducer design is bulky and complex, planetary gearboxes are compact and flexible. They are suitable for many applications, especially where space and weight are issues, as well as torque and speed reduction. However, understanding their mechanism and working isn’t as simple as it sounds, so here are some of the key benefits of planetary gearing.
Planetary gearboxes work by using two planetary gears that rotate around their own axes. The sun gear is used as the input, while the planetary gears are connected via a casing. The ratio of these gears is -Ns/Np, with 24 teeth in the sun gear and -3/2 on the planet gear.
Unlike traditional pinion-and-gear reducer designs, planetary gearboxes are much smaller and less expensive. A planetary gearbox is about 50% smaller and weighs less than a pinion-and-gear reducer. The smaller gear floats on top of three large gears, minimizing the effects of vibration and ensuring consistent transmission over time.
Planetary gearboxes are a good alternative to pinion-and-gear drive systems because they are smaller, less complex and offer a higher reduction ratio. Their meshing arrangement is similar to the Milky Way, with the sun gear in the middle and two or more outer gears. They are connected by a carrier that sets their spacing and incorporates an output shaft.
Compared to pinion-and-gear reduces, planetary gearboxes offer higher speed reduction and torque capacity. As a result, planetary gearboxes are small and compact and are often preferred for space-constrained applications. But what about the high torque transfer? If you’re looking for a compact alt

China 11kw 18kw 18.5kw 22kw 30kw 37kw 45kw 55kw 75kw 380V Ye2 Three Phase AC Electric Induction Motor     car motor		China 11kw 18kw 18.5kw 22kw 30kw 37kw 45kw 55kw 75kw 380V Ye2 Three Phase AC Electric Induction Motor     car motor
editor by czh

China ZD 60mm-104mm 10W-200W Low Rpm High Torque Single Phase 3 Phase Electric AC Induction Gear Motor ac motor

Warranty: 3months-1year
Model Number: 5IK90GU-CF
Type: Asynchronous Motor
Phase: Single-phase
Protect Feature: Drip-proof
AC Voltage: 115/120 V
Efficiency: IE 2
Function: Driving
Flange Size: 6mm 70mm 80mm 90mm 104mm
Packaging Details: in contans or pallet
Port: ZheJiang or HangZhou

Model Selection ZD Leader has a wide range of micro motor production lines in the industry, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations. AC Gear Motor Induction motors have single-phase type and three-phase type. This kind of motors do not only use electromagnetic coils and capacitors during starting, but also during operation. Although the starting torque is not very large, but it has a simple structure, high reliability, high efficiency and could continuously work. It is widely used in automation industry,logistics, assembly line and etc. Product Parameters

MOTOR FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
MOTOR TYPE INDUCTION MOTOR / REVERSIBLE MOTOR / TORQUE MOTOR / SPEED CONTROL MOTOR
OUTPUT POWER 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W (Can Be Customized)
OUTPUT SHAFT 8mm / 10mm / 12mm / 15mm ; Round Shaft, D-Cut Shaft, Key-Way Shaft (Can Be Customized)
Voltage type 110V,120V,220V,230V,380V,415V
Frequency 50/60Hz
Accessories Terminal Box / Fan / Thermal protector / Electric Brake / Controller
GEARBOX FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
Gear Ratio 3K-200K
Type Of Pinion GN Type / GU Type
Gearbox Type Regular Square Case gearbox / Right Angle Gearbox / L Type Gearbox
Detailed Images Other Products Why Choose Us
Stock In Hand Standard Type Non-Standard Type Customized Type
After Payment In 10 Days 15-30 Days Depend on the condition

The Basics of a Gear Motor

The basic mechanism behind the gear motor is the principle of conservation of angular momentum. The smaller the gear, the more RPM it covers and the larger the gear, the more torque it produces. The ratio of angular velocity of two gears is called the gear ratio. Moreover, the same principle applies to multiple gears. This means that the direction of rotation of each adjacent gear is always the opposite of the one it is attached to.
Motor

Induction worm gear motor

If you’re looking for an electric motor that can deliver high torque, an Induction worm gear motor might be the right choice. This type of motor utilizes a worm gear attached to the motor to rotate a main gear. Because this type of motor is more efficient than other types of motors, it can be used in applications requiring massive reduction ratios, as it is able to provide more torque at a lower speed.
The worm gear motor is designed with a spiral shaft that is set into splines in another gear. The speed at which the worm gear rotates is dependent on the torque produced by the main gear. Induction worm gear motors are best suited for use in low-voltage applications such as electric cars, renewable energy systems, and industrial equipment. They come with a wide range of power-supply options, including twelve-volt, 24-volt, and 36-volt AC power supplies.
These types of motors can be used in many industrial settings, including elevators, airport equipment, food packaging facilities, and more. They also produce less noise than other types of motors, which makes them a popular choice for manufacturers with limited space. The efficiency of worm gearmotors makes them an excellent choice for applications where noise is an issue. Induction worm gear motors can be compact and extremely high-torque.
While the Induction worm gear motor is most widely used in industrial applications, there are other kinds of gearmotors available. Some types are more efficient than others, and some are more expensive than others. For your application, choosing the correct motor and gearbox combination is crucial to achieving the desired result. You’ll find that the Induction worm gear motor is an excellent choice for many applications. The benefits of an Induction worm gear motor can’t be overstated.
The DC gear motor is an excellent choice for high-end industrial applications. This type of gearmotor is smaller and lighter than a standard AC motor and can deliver up to 200 watts of torque. A gear ratio of three to two can be found in these motors, which makes them ideal for a wide range of applications. A high-quality DC gear motor is a great choice for many industrial applications, as they can be highly efficient and provide a high level of reliability.
Electric gear motors are a versatile and widely used type of electric motor. Nevertheless, there are some applications that don’t benefit from them, such as applications with high shaft speed and low torque. Applications such as fan motors, pump and scanning machines are examples of such high-speed and high-torque demands. The most important consideration when choosing a gearmotor is its efficiency. Choosing the right size will ensure the motor runs efficiently at peak efficiency and will last for years.
Motor

Parallel shaft helical gear motor

The FC series parallel shaft helical gearmotor is a compact, lightweight, and high-performance unit that utilizes a parallel shaft structure. Its compact design is complemented by high transmission efficiency and high carrying capacity. The motor’s material is 20CrMnTi alloy steel. The unit comes with either a flanged input or bolt-on feet for installation. Its low noise and compact design make it an ideal choice for a variety of applications.
The helical gears are usually arranged in two rows of one another. Each row contains one or more rows of teeth. The parallel row has the teeth in a helical pattern, while the helical rows are lined up parallelly. In addition to this, the cross helical gears have a point contact design and do not overlap. They can be either parallel or crossed. The helical gear motors can have any number of helical pairs, each with a different pitch circle diameter.
The benefits of the Parallel Shaft Helical Gearbox include high temperature and pressure handling. It is produced by skilled professionals using cutting-edge technology, and is widely recognized for its high performance. It is available in a range of technical specifications and is custom-made to suit individual requirements. These gearboxes are durable and low-noise and feature high reliability. You can expect to save up to 40% of your energy by using them.
The parallel shaft helical gear motors are designed to reduce the speed of a rotating part. The nodular cast iron housing helps make the unit robust in difficult environments, while the precision-machined gears provide quiet, vibration-free operation. These motors are available in double reduction, triple reduction, and quadruple reduction. The capacity ranges from 0.12 kW to 45 kW. You can choose from a wide variety of capacities, depending on the size of your gearing needs.
The SEW-EURODRIVE parallel shaft helical gearmotor is a convenient solution for space-constrained applications. The machine’s modular design allows for easy mounting and a wide range of ambient temperatures. They are ideal for a variety of mechanical applications, including conveyors, augers, and more. If you want a small footprint, the SEW-EURODRIVE parallel shaft helical gear motor is the best solution for you.
The parallel shaft helical gears are advantageous for both high and low speed applications. Parallel helical gears are also suitable for low speed and low duty applications. A good example of a cross-helix gear is the oil pump of an internal combustion engine. Both types of helical gears are highly reliable and offer vibration-free operation. They are more costly than conventional gear motors, but offer more durability and efficiency.
Motor

Helical gear unit

This helical gear unit is designed to operate under a variety of demanding conditions and can be used in a wide range of applications. Designed for long life and high torque density, this gear unit is available in a variety of torques and gear ratios. Its design and construction make it compatible with a wide range of critical mechanical systems. Common applications include conveyors, material handling, steel mills, and paper mills.
Designed for high-performance applications, the Heidrive helical gear unit provides superior performance and value. Its innovative design allows it to function well under a wide range of operating conditions and is highly resistant to damage. These gear motors can be easily combined with a helical gear unit. Their combined power output is 100 Nm, and they have a high efficiency of up to 90%. For more information about the helical gear motor, contact a Heidrive representative.
A helical gear unit can be classified by its reference section in the standard plane or the turning plane. Its center gap is the same as that of a spur gear, and its number of teeth is the same. In addition to this, the helical gear has a low axial thrust, which is another important characteristic. The helical gear unit is more efficient at transferring torque than a spur gear, and it is quieter, too.
These units are designed to handle large loads. Whether you are using them for conveyors, augers, or for any other application that involves high-speed motion, a helical gear unit will deliver maximum performance. A helical gear unit from Flender can handle 400,000 tasks with a high degree of reliability. Its high efficiency and high resistance to load ensures high plant availability. These gear motors are available in a variety of sizes, from single-speed to multi-speed.
PEC geared motors benefit from decades of design experience and high quality materials. They are robust, quiet, and offer excellent performance. They are available in multiple configurations and are dimensionally interchangeable with other major brands. The gear motors are manufactured as modular kits to minimize inventory. They can be fitted with additional components, such as backstops and fans. This makes it easy to customize your gear motors and save money while reducing costs.
Another type of helical gears is the double helical gear. The double helical gear unit has two helical faces with a gap between them. They are better for enclosed gear systems as they provide greater tooth overlap and smoother performance. Compared to double helical gears, they are smaller and more flexible than the Herringbone type. So, if you’re looking for a gear motor, a helical gear unit may be perfect for you.

China ZD 60mm-104mm 10W-200W Low Rpm High Torque Single Phase 3 Phase Electric AC Induction Gear Motor     ac motor	China ZD 60mm-104mm 10W-200W Low Rpm High Torque Single Phase 3 Phase Electric AC Induction Gear Motor     ac motor
editor by czh