Tag Archives: servo motors reducer

China 2500PPR Large High Torque 24V 400W Brushless DC Servo Motors with Precision Planetary Gear Reducer Brushless DC Motor with Hot selling

Solution Description

 Custom Substantial Torque 24V DC Planetary Gear Robotic Motor 24V BLDC Motor with Corridor Encoder
 
Product Number:KY80AS5714-15PGL60-ten
Utilization:Boat, Car, Admirer
Certification:CE
Sort:Servo Motor
Torque:22N.M
Building:Long term Magnet
Commutation:Brushless
Safeguard Characteristic:Drip-evidence
Speed(RPM):150r/min
Steady Current(A):22A
Output Energy:400W
Voltage(V):24VDC
Performance:IE 1
Software:robotic
Item Name:24v bldc motor with corridor encoder
Motor type:BLDC MOTOR
Keywords and phrases:SERVO MOTOR
Rated Voltage:24VDC
Color:Black
Diameter:80MM
Energy:400W
Rated speed:1500 ten%rpm
MOTOR TORQUE:2.55N.M

Item Description

 

Product Attributes:
*Large Torque to inertia ratio&up to 15000Nm/kgm²
*Quickly dynamic reaction *time consistent <20ms
*Broad velocity altering&feedback up to a thousand:one
*Continual pace precision up to .5%
*Substantial overload,2Mn/30s,3.5N.m/10s
*Small volume and light-weight
*Silent,the least expensive sound is only 45dB(A)
*Protected with IP65,Course F insulation
Market course
1.The altitude should be more than 1000 meters earlier mentioned sea degree
2.Atmosphere temperature:+5ºC~+40ºC
three.The thirty day period average tallest relative humidity is ninety%,at the same the thirty day period common lowest temperature is significantly less than 25ºC.

Parameters

 

Product

Volt

Power

Rated Torque

Rated Speed

Rated Present

Peak Torque

Encoder

Weight

Unit

V

W

Nm

r/min

A

Nm

P/R

kg

KY60AS5711-thirty

24

one hundred

.318

3000

five.four

.95

2500

one.5

KY80AS5712-fifteen

twelve

200

1.27

1500

22

three.eight

2500

2.two

KY80AS5712-fifteen

24/48

200

1.27

1500

nine.4

three.8

2500

2.2

KY80AS5714-fifteen

twelve

400

two.fifty five

1500

forty four

seven.65

2500

three.6

KY80AS5714-fifteen

24/48

400

two.fifty five

1500

21.3

seven.sixty five

2500

3.six

KY80AS5714-30

twelve

four hundred

1.27

3000

forty four

3.eight

2500

two.2

KY80AS5714-thirty

24/48

400

1.27

3000

eighteen.eight

three.eight

2500

2.two

KY110AS0405-15

forty eight

five hundred

3.one

1500

14

10.8

2500

six

KY110AS5717-fifteen

24

750

four.77

1500

41

sixteen.six

2500

six

KY110AS0408-fifteen

forty eight

800

5

1500

22

17.nine

2500

seven.8

KY110AS5710-15

24

one thousand

6.three

1500

fifty five

21.four

2500

seven.8

KY110AS571-fifteen

forty eight

a thousand

six.three

1500

28

22

2500

seven.8

KY110AS 0571 -twelve

forty eight

1200

four.5

2500

33

fifteen.seven

2500

seven.8

KY110AS571-fifteen

48

1500

9.5

1500

37.5

28

2500

ten

KY110AS0420-twenty five

forty eight

2000

seven.six

2500

55

26

2500

10

KY130AS0430-fifteen

forty eight

3000

19

1500

73

fifty seven

2500

14

Gear ratio 1:7.5 one:10 one:fifteen one:20 1:25 1:30 1:forty one:fifty 1:sixty

 

 

To Be Negotiated 1 Piece
(Min. Order)

###

Application: Industrial
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control
Casing Protection: Protection Type
Number of Poles: 10

###

Samples:
US$ 285/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Model

Volt

Power

Rated Torque

Rated Speed

Rated Current

Peak Torque

Encoder

Weight

Unit

V

W

Nm

r/min

A

Nm

P/R

kg

KY60AS0201-30

24

100

0.318

3000

5.4

0.95

2500

1.5

KY80AS0102-15

12

200

1.27

1500

22

3.8

2500

2.2

KY80AS0202-15

24/48

200

1.27

1500

9.4

3.8

2500

2.2

KY80AS0104-15

12

400

2.55

1500

44

7.65

2500

3.6

KY80AS0204-15

24/48

400

2.55

1500

21.3

7.65

2500

3.6

KY80AS0104-30

12

400

1.27

3000

44

3.8

2500

2.2

KY80AS0204-30

24/48

400

1.27

3000

18.8

3.8

2500

2.2

KY110AS0405-15

48

500

3.1

1500

14

10.8

2500

6

KY110AS0207-15

24

750

4.77

1500

41

16.6

2500

6

KY110AS0408-15

48

800

5

1500

22

17.9

2500

7.8

KY110AS0210-15

24

1000

6.3

1500

55

21.4

2500

7.8

KY110AS0410-15

48

1000

6.3

1500

28

22

2500

7.8

KY110AS0412-12

48

1200

4.5

2500

33

15.7

2500

7.8

KY110AS0415-15

48

1500

9.5

1500

37.5

28

2500

10

KY110AS0420-25

48

2000

7.6

2500

55

26

2500

10

KY130AS0430-15

48

3000

19

1500

73

57

2500

14

###

Gear ratio 1:7.5 1:10 1:15 1:20 1:25 1:30 1:40 1:50 1:60
To Be Negotiated 1 Piece
(Min. Order)

###

Application: Industrial
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control
Casing Protection: Protection Type
Number of Poles: 10

###

Samples:
US$ 285/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Model

Volt

Power

Rated Torque

Rated Speed

Rated Current

Peak Torque

Encoder

Weight

Unit

V

W

Nm

r/min

A

Nm

P/R

kg

KY60AS0201-30

24

100

0.318

3000

5.4

0.95

2500

1.5

KY80AS0102-15

12

200

1.27

1500

22

3.8

2500

2.2

KY80AS0202-15

24/48

200

1.27

1500

9.4

3.8

2500

2.2

KY80AS0104-15

12

400

2.55

1500

44

7.65

2500

3.6

KY80AS0204-15

24/48

400

2.55

1500

21.3

7.65

2500

3.6

KY80AS0104-30

12

400

1.27

3000

44

3.8

2500

2.2

KY80AS0204-30

24/48

400

1.27

3000

18.8

3.8

2500

2.2

KY110AS0405-15

48

500

3.1

1500

14

10.8

2500

6

KY110AS0207-15

24

750

4.77

1500

41

16.6

2500

6

KY110AS0408-15

48

800

5

1500

22

17.9

2500

7.8

KY110AS0210-15

24

1000

6.3

1500

55

21.4

2500

7.8

KY110AS0410-15

48

1000

6.3

1500

28

22

2500

7.8

KY110AS0412-12

48

1200

4.5

2500

33

15.7

2500

7.8

KY110AS0415-15

48

1500

9.5

1500

37.5

28

2500

10

KY110AS0420-25

48

2000

7.6

2500

55

26

2500

10

KY130AS0430-15

48

3000

19

1500

73

57

2500

14

###

Gear ratio 1:7.5 1:10 1:15 1:20 1:25 1:30 1:40 1:50 1:60

Dynamic Modeling of a Planetary Motor

A planetary gear motor consists of a series of gears rotating in perfect synchrony, allowing them to deliver torque in a higher output capacity than a spur gear motor. Unlike the planetary motor, spur gear motors are simpler to build and cost less, but they are better for applications requiring lower torque output. That is because each gear carries the entire load. The following are some key differences between the two types of gearmotors.

planetary gear system

A planetary gear transmission is a type of gear mechanism that transfers torque from one source to another, usually a rotary motion. Moreover, this type of gear transmission requires dynamic modeling to investigate its durability and reliability. Previous studies included both uncoupled and coupled meshing models for the analysis of planetary gear transmission. The combined model considers both the shaft structural stiffness and the bearing support stiffness. In some applications, the flexible planetary gear may affect the dynamic response of the system.
In a planetary gear device, the axial end surface of the cylindrical portion is rotatable relative to the separating plate. This mechanism retains lubricant. It is also capable of preventing foreign particles from entering the planetary gear system. A planetary gear device is a great choice if your planetary motor’s speed is high. A high-quality planetary gear system can provide a superior performance than conventional systems.
A planetary gear system is a complex mechanism, involving three moving links that are connected to each other through joints. The sun gear acts as an input and the planet gears act as outputs. They rotate about their axes at a ratio determined by the number of teeth on each gear. The sun gear has 24 teeth, while the planet gears have three-quarters that ratio. This ratio makes a planetary motor extremely efficient.
Motor

planetary gear train

To predict the free vibration response of a planetary motor gear train, it is essential to develop a mathematical model for the system. Previously, static and dynamic models were used to study the behavior of planetary motor gear trains. In this study, a dynamic model was developed to investigate the effects of key design parameters on the vibratory response. Key parameters for planetary gear transmissions include the structure stiffness and mesh stiffness, and the mass and location of the shaft and bearing supports.
The design of the planetary motor gear train consists of several stages that can run with variable input speeds. The design of the gear train enables the transmission of high torques by dividing the load across multiple planetary gears. In addition, the planetary gear train has multiple teeth which mesh simultaneously in operation. This design also allows for higher efficiency and transmittable torque. Here are some other advantages of planetary motor gear trains. All these advantages make planetary motor gear trains one of the most popular types of planetary motors.
The compact footprint of planetary gears allows for excellent heat dissipation. High speeds and sustained performances will require lubrication. This lubricant can also reduce noise and vibration. But if these characteristics are not desirable for your application, you can choose a different gear type. Alternatively, if you want to maintain high performance, a planetary motor gear train will be the best choice. So, what are the advantages of planetary motor gears?

planetary gear train with fixed carrier train ratio

The planetary gear train is a common type of transmission in various machines. Its main advantages are high efficiency, compactness, large transmission ratio, and power-to-weight ratio. This type of gear train is a combination of spur gears, single-helical gears, and herringbone gears. Herringbone planetary gears have lower axial force and high load carrying capacity. Herringbone planetary gears are commonly used in heavy machinery and transmissions of large vehicles.
To use a planetary gear train with a fixed carrier train ratio, the first and second planets must be in a carrier position. The first planet is rotated so that its teeth mesh with the sun’s. The second planet, however, cannot rotate. It must be in a carrier position so that it can mesh with the sun. This requires a high degree of precision, so the planetary gear train is usually made of multiple sets. A little analysis will simplify this design.
The planetary gear train is made up of three components. The outer ring gear is supported by a ring gear. Each gear is positioned at a specific angle relative to one another. This allows the gears to rotate at a fixed rate while transferring the motion. This design is also popular in bicycles and other small vehicles. If the planetary gear train has several stages, multiple ring gears may be shared. A stationary ring gear is also used in pencil sharpener mechanisms. Planet gears are extended into cylindrical cutters. The ring gear is stationary and the planet gears rotate around a sun axis. In the case of this design, the outer ring gear will have a -3/2 planet gear ratio.
Motor

planetary gear train with zero helix angle

The torque distribution in a planetary gear is skewed, and this will drastically reduce the load carrying capacity of a needle bearing, and therefore the life of the bearing. To better understand how this can affect a gear train, we will examine two studies conducted on the load distribution of a planetary gear with a zero helix angle. The first study was done with a highly specialized program from the bearing manufacturer INA/FAG. The red line represents the load distribution along a needle roller in a zero helix gear, while the green line corresponds to the same distribution of loads in a 15 degree helix angle gear.
Another method for determining a gear’s helix angle is to consider the ratio of the sun and planet gears. While the sun gear is normally on the input side, the planet gears are on the output side. The sun gear is stationary. The two gears are in engagement with a ring gear that rotates 45 degrees clockwise. Both gears are attached to pins that support the planet gears. In the figure below, you can see the tangential and axial gear mesh forces on a planetary gear train.
Another method used for calculating power loss in a planetary gear train is the use of an auto transmission. This type of gear provides balanced performance in both power efficiency and load capacity. Despite the complexities, this method provides a more accurate analysis of how the helix angle affects power loss in a planetary gear train. If you’re interested in reducing the power loss of a planetary gear train, read on!

planetary gear train with spur gears

A planetary gearset is a type of mechanical drive system that uses spur gears that move in opposite directions within a plane. Spur gears are one of the more basic types of gears, as they don’t require any specialty cuts or angles to work. Instead, spur gears use a complex tooth shape to determine where the teeth will make contact. This in turn, will determine the amount of power, torque, and speed they can produce.
A two-stage planetary gear train with spur gears is also possible to run at variable input speeds. For such a setup, a mathematical model of the gear train is developed. Simulation of the dynamic behaviour highlights the non-stationary effects, and the results are in good agreement with the experimental data. As the ratio of spur gears to spur gears is not constant, it is called a dedendum.
A planetary gear train with spur gears is a type of epicyclic gear train. In this case, spur gears run between gears that contain both internal and external teeth. The circumferential motion of the spur gears is analogous to the rotation of planets in the solar system. There are four main components of a planetary gear train. The planet gear is positioned inside the sun gear and rotates to transfer motion to the sun gear. The planet gears are mounted on a joint carrier that is connected to the output shaft.
Motor

planetary gear train with helical gears

A planetary gear train with helical teeth is an extremely powerful transmission system that can provide high levels of power density. Helical gears are used to increase efficiency by providing a more efficient alternative to conventional worm gears. This type of transmission has the potential to improve the overall performance of a system, and its benefits extend far beyond the power density. But what makes this transmission system so appealing? What are the key factors to consider when designing this type of transmission system?
The most basic planetary train consists of the sun gear, planet gear, and ring gear elements. The number of planets varies, but the basic structure of planetary gears is similar. A simple planetary geartrain has the sun gear driving a carrier assembly. The number of planets can be as low as two or as high as six. A planetary gear train has a low mass inertia and is compact and reliable.
The mesh phase properties of a planetary gear train are particularly important in designing the profiles. Various parameters such as mesh phase difference and tooth profile modifications must be studied in depth in order to fully understand the dynamic characteristics of a PGT. These factors, together with others, determine the helical gears’ performance. It is therefore essential to understand the mesh phase of a planetary gear train to design it effectively.

China 2500PPR Large High Torque 24V 400W Brushless DC Servo Motors with Precision Planetary Gear Reducer Brushless DC Motor     with Hot selling	China 2500PPR Large High Torque 24V 400W Brushless DC Servo Motors with Precision Planetary Gear Reducer Brushless DC Motor     with Hot selling
editor by czh 2022-12-14